本文主要讲述一些对于Series和DataFrame一些基本的操作,具体用法说明见程序中的注释:
代码:
#coding=utf-8
'''
Created on 2017-2-23
@author: admin
'''
from pandas import Series
from pandas import DataFrame
import numpy as np
obj=Series([1,3,2,4],index=['a','e','b','d'])
print obj
print 'reindex方法重新根据索引进行排序'
print obj.reindex(['a','b','e','d'])
print '丢弃obj中的某项:'
print obj.drop('e')
print '索引:'
print obj['a'],obj[0]
print obj[0:2]
#查找series中小于3的值都有哪些
print obj[obj<3]
print 'reindex在dataframe中进行索引排序:'
frame=DataFrame(np.arange(9).reshape(3,3),index=[0,1,2],columns=['b','a','c'])
print frame
print '用reindex将dataframe中行列索引进行重新排列:'
print frame.reindex([1,0,2],columns=['a','b','c'])
print '丢弃dataframe中某行数据:'
print frame.drop([0],axis=0)
print '丢弃dataframe中某列数据:'
print frame.drop(['a'],axis=1)
print '索引:'
print frame.ix[[0,1],['a','b']]
实验结果:
a 1
e 3
b 2
d 4
dtype: int64
reindex方法重新根据索引进行排序
a 1
b 2
e 3
d 4
dtype: int64
丢弃obj中的某项:
a 1
b 2
d 4
dtype: int64
索引:
1 1
a 1
e 3
dtype: int64
a 1
b 2
dtype: int64
reindex在dataframe中进行索引排序:
b a c
0 0 1 2
1 3 4 5
2 6 7 8
用reindex将dataframe中行列索引进行重新排列:
a b c
1 4 3 5
0 1 0 2
2 7 6 8
丢弃dataframe中某行数据:
b a c
1 3 4 5
2 6 7 8
丢弃dataframe中某列数据:
b c
0 0 2
1 3 5
2 6 8
索引:
a b
0 1 0
1 4 3
本文完全原创,如有雷同,纯属你抄我。