poj 3237 tree

题意:一棵树n个节点,三种操作:1、改变一条边的权值。2、查询节点a到b的路径中的边的最大值。3、将a到b路径上所有边的权值变为其相反数。

 

第4道树链剖分。。

剖分后,用线段树点更新实现操作1,即可,对于操作3,设区间内原最大值、最小值为a、b,则区间内的数都乘以-1之后,最大值、最小值变为:-b,-a。这里用线段树成段更新操作即可。注意的是使用lazy标记的时候,应当使用异或运算。

 

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 10005
#define lson i<<1,l,m
#define rson i<<1|1,m+1,r
#define inf 0x3f3f3f3f
int lazy[maxn<<2],Min[maxn<<2],Max[maxn<<2],id[maxn],top[maxn],son[maxn],fa[maxn],num[maxn],dep[maxn],next[maxn<<1],head[maxn],edge[maxn<<1],e[maxn][3];
int cnt,tot;
void add(int u,int v)
{
    edge[++tot]=v;
    next[tot]=head[u];
    head[u]=tot;
}

void PushUp(int i)
{
    Max[i]=max(Max[i<<1],Max[i<<1|1]);
    Min[i]=min(Min[i<<1],Min[i<<1|1]);
}

void neg(int i)
{
    int t=Max[i];
    Max[i]=-Min[i];
    Min[i]=-t;
}

void PushDown(int i)
{
    if(lazy[i])
    {
        lazy[i<<1]^=1;
        lazy[i<<1|1]^=1;
        neg(i<<1);
        neg(i<<1|1);
        lazy[i]=0;
    }
}

void Negate(int i,int l,int r,int L,int R)
{
    if(L<=l && r<=R)
    {
        lazy[i]^=1;
        neg(i);
        return;
    }
    PushDown(i);
    int m=(l+r)>>1;
    if(L<=m) Negate(lson,L,R);
    if(R>m) Negate(rson,L,R);
    PushUp(i);
}

void change(int i,int l,int r,int x,int v)
{
    if(l==r)
    {
        Max[i]=Min[i]=v;
        return;
    }
    PushDown(i);
    int m=(l+r)>>1;
    if(x<=m) change(lson,x,v);
    else change(rson,x,v);
    PushUp(i);
}

int query(int i,int l,int r,int L,int R)
{
    if(L<=l && r<=R) return Max[i];
    PushDown(i);
    int m=(l+r)>>1,ans=-inf;
    if(L<=m) ans=max(ans,query(lson,L,R));
    if(R>m) ans=max(ans,query(rson,L,R));
    return ans;
}

void dfs(int u)
{
    num[u]=1,son[u]=0;
    for(int i=head[u],v=edge[i]; i; i=next[i],v=edge[i])
        if(fa[u]!=v)
        {
            fa[v]=u,dep[v]=dep[u]+1;
            dfs(v);
            num[u]+=num[v];
            if(num[son[u]]<num[v]) son[u]=v;
        }
}
void dfs2(int u,int tp)
{
    top[u]=tp,id[u]=++cnt;
    if(son[u]) dfs2(son[u],tp);
    for(int i=head[u],v=edge[i]; i; i=next[i],v=edge[i])
        if(fa[u]!=v&&son[u]!=v) dfs2(v,v);
}

void Negate(int a,int b)
{
    int f1=top[a],f2=top[b];
    while(f1!=f2)
    {
        if(dep[f1]<dep[f2])
        {
            swap(a,b),swap(f1,f2);
        }
        Negate(1,1,cnt,id[f1],id[a]);
        a=fa[f1];
        f1=top[a];
    }
    if(a==b) return;
    if(dep[a]>dep[b]) swap(a,b);
    Negate(1,1,cnt,id[son[a]],id[b]);
}

int find(int a,int b)
{
    int ans=-inf,f1=top[a],f2=top[b];
    while(f1!=f2)
    {
        if(dep[f1]<dep[f2])
        {
            swap(a,b),swap(f1,f2);
        }
        ans=max(ans,query(1,1,cnt,id[f1],id[a]));
        a=fa[f1];
        f1=top[a];
    }
    if(a==b) return ans;
    if(dep[a]>dep[b]) swap(a,b);
    return max(ans,query(1,1,cnt,id[son[a]],id[b]));
}

int main()
{
    int T,n;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        memset(Max,-inf,sizeof(Max));
        memset(Min,inf,sizeof(Min));
        memset(lazy,0,sizeof(lazy));
        memset(head,0,sizeof(head));
        fa[1]=dep[1]=cnt=tot=0;
        for(int i=1; i<=n-1; ++i)
        {
            scanf("%d%d%d",&e[i][0],&e[i][1],&e[i][2]);
            add(e[i][0],e[i][1]);
            add(e[i][1],e[i][0]);
        }
        dfs(1);
        dfs2(1,1);
        for(int i=1; i<=n-1; ++i)
        {
            if(dep[e[i][0]]>dep[e[i][1]]) swap(e[i][0],e[i][1]);
            change(1,1,cnt,id[e[i][1]],e[i][2]);
        }
        char s[10];
        while(scanf("%s",s))
        {
            if(s[0]=='D') break;
            int a,b;
            scanf("%d%d",&a,&b);
            if(s[0]=='Q') printf("%d\n",find(a,b));
            else if(s[0]=='C') change(1,1,cnt,id[e[a][1]],b);
            else Negate(a,b);
        }
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值