题目大意:n个桃分给m只猴子,要求第1只猴子获得的桃子数目最多。问分配的方法数。
分析:
设第i个猴子分得的桃子数目为x[i](0<=x[i]<=n)
若没有要求,则问题转为求不定方程x[1]+x[2]+x[3]+……+x[m]=n,即x[2]+x[3]+……+x[m]=n-x[1] 的非负整数解的个数。
用插板法得到个数为C(n-x[1]+m-1-1,m-1-1)=C(n-x[1]+m-2,n-x[1])
现在要求第一个猴子得到的最多,可以枚举第1个猴子分得的桃子数目,考虑用总的方案数减去第一个猴子分得的不是最多的方案数。
根据容斥原理,
总方案数减去至少有1只猴子比第1个猴子分得的桃子多的方案数,加上至少有2个猴子比第1个猴子分得的桃子多……这样就可以得到结果。
接下来考虑至少有i只猴子比第1个分得的桃子多的方案数。
设当前枚举的第一个猴子分得的桃子数为x。
则转化为求不定x[2]+x[3]+……+x[m]=n-x至少有i个解大于x的解的个数。
任选其中i个x[],使得其大于x,方案数为C(m-1,i)。
此时等价于求x[2]+x[3]+…+x[m]=n-x-x*i的非负整数解个数,即C(n-x-x*i+m-2,n-x-x*i)个
于是至少有i只猴子比第1个分得的桃子多的方案数为C(m-1,i)*C(n-x-x*i+m-2,n-x-x*i)
大致思路就是这样。
另外此题还需注意以下几点:
1、求组合数需预处理,可通过费马小定理求逆元来求。
2、枚举第一个猴子分得的桃子个数可以从max(n/m,1)开始。
#include<stdio.h>
typedef long long LL;
#define mod 1000000007
LL pow(LL a, LL b) {
LL s = 1;
while(b) {
if(b&1) s = (s * a) % mod;
a = (a*a) % mod;
b >>= 1;
}
return s;
}
LL f[200005],inv[200005];//注意数组大小
void init()
{
f[0]=f[1]=inv[0]=inv[1]=1;
for(LL i=2;i<=200000;++i){
f[i]=f[i-1]*i%mod;
inv[i]=pow(f[i],mod-2);
}
}
LL C(int n,int m)
{
if(m>n||m<0) return 0;
return f[n]*inv[m]%mod*inv[n-m]%mod;
}
LL n,m;
LL cal(int x)
{
LL ans=0;
for(LL i=0,s=x;i<m&&s<=n;++i,s+=x) //剪枝
{
LL t=C(m-1,i)*C(n-s+m-2,n-s)%mod;
if(i&1) ans=((ans-t)%mod+mod)%mod;
else ans=(ans+t)%mod;
}
return ans;
}
int main() {
int t;
scanf("%d",&t);
init();
while(t--)
{
scanf("%lld%lld", &n,&m);
if(m==1) puts("1");
else
{
LL ans=0;
for(LL i=1;i<=n;++i) ans=(ans+cal(i))%mod;
printf("%lld\n",ans);
}
}
return 0;
}