《离散数学》知识点总结

离散数学



🤡命题

♿命题概念

具有唯一真值的陈述句
1.感叹句、疑问句、祈使句、命令句都不是命题
2.有歧义的也不是命题 “这句话是假的”
3.命题不需要知道真值是多少,但知道有唯一真值
复合命题:命题 + 命题可以进一步分解!

🐒联结词

1.
五种符号
PQ: PQ都为真P∧Q则为真,其余皆为假
PVQ: PQ都为假P V Q则为假,其余皆为真
P<->Q: PQ同时为真或PQ同时为假,则P<->Q为真,其余皆为假
PQ: P为真,Q为假,P→Q则为假,其余皆为真
三种情况下变为Q → P:
①:只有.......才......
②:除非......否则......
③:除非......才......
PS: 除非他以书面形式或口头形式通知我,否则我不会参加明天的会议。
令p: 他书面形式同时我,q: 他口头形式通知我,r: 我参加明天的会议则符号化为 r->pvq
此时的r并不是非r要注意
运算符优先顺序:(非、∧、V、→、<->)
2.逆否命题:P→Q 等于 非Q → 非P
3.公式类型:永真式(重言式)、永假式(矛盾式)、可满足式
4.等价公式:
在这里插入图片描述


🚾范式

主析取范式 极小项 m 简单合取式的析取 非为0 没有为1 合1
主合取范式 极大项 M 简单析取式的合取 非为1 没有为0 析0
如何添加缺少的变元?
在这里插入图片描述
成真赋值、成假赋值:二进制

😕推理

在这里插入图片描述

前提引入证明:把结论的前提也当作一个条件来看 P49
结论引入证明:把结论的否定式当作一个条件来看 P50


👻谓词逻辑

1.个体词: 主语、宾语之类
2.谓词: 描述一个个体词的属性或者多个个体词之间的关系

综合复查知识点

  1. 空集 ∈ 空集 ❌ 空集不是空集的元素;
    空集 ⊆ 空集 ✅ 空集是空集本身的子集;
  2. 命题公式化简:每一个符号加一层次,算完 +1,为最终层次。
  3. 命题公式类型:化简
  4. P(A)意味着 A中元素的各种组合加上空集 (每个元素都要加括号)P100 例7.2
    设A={a,b,c},P(A)为A的幂集,{P(A),}是偏序集。则P(A)的子集={Φ,{a},{b},{a,b},{b,c}}
  5. 1集合A上一条横线表示 A的补集:表示所有不属于集合A的玄素
  6. 偏序关系:设R 是集合A 上的二元关系,若R 是自反的,反对称的和传递的,则称R 是 A 上的偏序关系
  7. 传递(对称、自反)闭包:就是把原来的R 增加一些关系 使它拥有要求性质。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值