离散数学
🤡命题
♿命题概念
具有唯一真值的陈述句
1.感叹句、疑问句、祈使句、命令句都不是命题
2.有歧义的也不是命题 “这句话是假的”
3.命题不需要知道真值是多少,但知道有唯一真值
复合命题:命题 + 命题可以进一步分解!
🐒联结词
1.
P∧
Q: PQ都为真
P∧Q则为真,其余皆为假
PV
Q: PQ都为假
P V Q则为假,其余皆为真
P<->
Q: PQ同时为真或PQ同时为假
,则P<->Q为真,其余皆为假
P→
Q: P为真,Q为假
,P→Q则为假,其余皆为真
三种情况下变为Q → P:
①:只有.......才......
②:除非......否则......
③:除非......才......
PS: 除非他以书面形式或口头形式通知我,否则我不会参加明天的会议。
令p: 他书面形式同时我,q: 他口头形式通知我,r: 我参加明天的会议则符号化为 r->pvq
此时的r
并不是非r
要注意
运算符优先顺序:(非、∧、V、→、<->)
2.逆否命题:P→Q
等于 非Q → 非P
3.公式类型:永真式(重言式)、永假式(矛盾式)、可满足式
4.等价公式:
🚾范式
主析取范式 极小项 m 简单合取式的析取 非为0 没有为1 合1
主合取范式 极大项 M 简单析取式的合取 非为1 没有为0 析0
如何添加缺少的变元?
成真赋值、成假赋值:二进制
😕推理
前提引入证明:把结论的前提也当作一个条件来看 P49
结论引入证明:把结论的否定式当作一个条件来看 P50
👻谓词逻辑
1.个体词: 主语、宾语之类
2.谓词: 描述一个个体词的属性或者多个个体词之间的关系
综合复查知识点
- 空集 ∈ 空集 ❌ 空集不是空集的元素;
空集 ⊆ 空集 ✅ 空集是空集本身的子集; - 命题公式化简:每一个符号加一层次,算完 +1,为最终层次。
- 命题公式类型:化简
- P(A)意味着 A中元素的各种组合加上空集 (每个元素都要加括号)
P100 例7.2
设A={a,b,c},P(A)为A的幂集,{P(A),}是偏序集。则P(A)的子集={Φ,{a},{b},{a,b},{b,c}} - 1集合A上一条横线表示 A的补集:表示所有不属于集合A的玄素
- 偏序关系:设R 是集合A 上的二元关系,若R 是
自反的,反对称的和传递的
,则称R 是 A 上的偏序关系 - 传递(对称、自反)闭包:就是把原来的R 增加一些关系 使它拥有要求性质。