推荐算法
sqzr316
这个作者很懒,什么都没留下…
展开
-
2.召回率(查全率)以及准确率的理解
1.召回率/查全率(recall) 查询到的数据中有用的数据占所有有用的数据的比率 2.准确率(precision) 查询到的数据中有用的数据比率占总查询的数据的比率原创 2021-07-27 10:44:24 · 1424 阅读 · 0 评论 -
1.基于物品的协同过滤推荐算法理解
基于物品的协同过滤推荐算法可以概括为一下两个步骤: 计算物品之间的相似度 对用户的历史行为进行分析,计算物品相似度进而为用户产生推荐列表,我们可以利用如下的凡是对物品与物品之间的相似度进行计算: 其中N(i)表示喜欢物品i的用户数,N(j)表示喜欢物品j的用户数。 3. 从上面的公式中,我们可以看出,当两个物品同时被很多用户喜欢的时候,这两个物品也就有了相似度,换句话说就是用户的历史兴趣和爱好可以为喜欢的物品贡献相似度。所以再次就原创 2021-07-26 13:59:00 · 903 阅读 · 0 评论