数学
文章平均质量分 92
yuukilp
Full Of Curiosity
展开
-
HDU 5607 graph
题意: 给定一个有向图,询问从某个点出发,走 KK 步到达其它各点的概率,表示为 x/yx/y,要求 x∗y5+109mod(7+109)x * y^{5+ 10^9} mod (7 + 10^9). N≤50,M≤1000,Q≤20,u≤N,K≤109N\le 50, M\le 1000, Q\le 20 ,u\le N, K\le 10^9思路: 首先考虑一个一个经典的问题,就是原创 2016-01-03 11:05:45 · 646 阅读 · 3 评论 -
HDU 5648 DZY Loves Math
题意: 计算 ∑1≤i≤n∑1≤j≤mgcd(i AND j,i OR j)\sum_{1\le i\le n} \sum_{1\le j \le m} \gcd(i \text{ AND } j, i \text{ OR } j) 1≤t≤3,1≤n,m≤150001\le t \le 3,1\le n,m \le 15000解释: a=i AND j,b=i OR ja = i原创 2016-03-20 11:16:43 · 661 阅读 · 0 评论 -
SPOJ 5971 LCM SUM
题意: 求 ∑i=1i=n LCM(i,n)\sum_{i=1}^{i=n}\ LCM(i, n) 1≤T≤300000 1≤n≤1061 \le T \le 300000\ 1 \le n \le 10^6思路: LCM(i,n)=i∗ngcd(i,n)LCM(i, n) = \frac{i * n}{gcd(i, n)} 令 g=gcd(i,n)g = gcd(i, n)原创 2016-04-11 23:49:07 · 476 阅读 · 0 评论 -
HDU 5661 Claris and XOR
题意: 给定两个区间,在两个区间任意选择两个数,求最大的异或值?思路: 贪心 从高位开始枚举,优先选择放置01或者10,每次判断这次的选择是否合法,然后就没了!代码:#include <iostream>#include <cstdio>#define PB push_back#define FT first#define SD second#define MP make原创 2016-04-10 10:04:18 · 672 阅读 · 2 评论 -
FFT算法学习
写在前面: > 初学FFT算法移步:here 讲的真心不错,本文主要记录下自己的理解。 建议阅读的过程中,自己动手算一算需要仔细理解的地方! overview 定义一个多项式:A(x)=Σj=0n−1aj⋅xjA(x) = \mathop{\Sigma}_{j = 0}^{n - 1}a_j\cdot x^j 计算 C(x)=A(x)∗B(x)C(x) = A(x) * B原创 2016-04-15 10:17:47 · 889 阅读 · 0 评论 -
HDU 1402 A * B (FFT)
题意: 计算 A∗BA * B (A,BA, B 数字的长度 ≤50000\le 50000)思路: 很裸的 FFTFFT 入门题,最后的输出答案注意调整就OK了代码:#include <cstdio>#include <cmath>#include <algorithm>#include <cstring>#define PB push_back#define FT firs原创 2016-04-15 17:59:12 · 612 阅读 · 0 评论 -
LightOJ 1289 LCM from 1 to n
题意: 求 lcm(1,2,....n)lcm(1, 2, ....n) 数据范围: n≤108n \le 10^8, 10410^4 组测试数据思路: L(2) = 1 * 2 L(3) = 1 * 2 * 3 L(4) = 1 * 2 * 3 * 2 // because 4 = 2^2 L(5) = 1 * 2 * 3 * 2 * 5 L原创 2016-04-28 18:39:43 · 775 阅读 · 0 评论 -
CDOJ 1314 Hash Perfectly
题意: 给定 nn 个数字,和一个hash表的最大长度,求一个最佳的hash表的长度,使得平均查找长度(ASL)最小,ASL=1n∑ni=1ciASL=\frac{1}{n}\sum_{i=1}^{n}c_i思路: FFT + 思维题,很好很好的题,可惜我不完全不会做! 这道题需要转几个弯! 1.平均查找长度的转换? 我们直接去求那个式子,是不太好搞的,所以转化一下为:原创 2016-04-19 00:28:11 · 422 阅读 · 0 评论 -
HDU 5608 function
题意: 已知:n2−3n+2=∑d|nf(d)n^2 -3n+2 = \sum_ {d|n} f(d) 计算:h(n)=∑i=1nf(i)mod109+7h(n) = \sum_{i=1}^n f(i) \; mod \; 10^9+7思路: 从给出的公式的性质入手。 ∑i=1n∑d|if(d)=∑i=1nf(i)⌊ni⌋=∑i=1nh(⌊ni⌋)\sum_{i=1}^n转载 2016-01-09 18:26:17 · 638 阅读 · 2 评论