算法细节系列(2):231.Power of Two && Three

算法细节系列(2):231.Power of Two && Three

前言

在刷leetCode时,遇到了一系列关于power of Number的问题,刚开始不以为然,以为用简单的递归就能求解,可直到看到power of three官方解时,才发现自己的渺小。它的思维深度和广度着实不是我等小菜能够比拟的,但我还是在其基础上强行解释了一些算法的核心思想。

问题

整理自leetCode 231.Power of Two && 236.Power of Three

Given an integer, write a function to determine if it is a power of two.
Given an integer, write a function to determine if it is a power of three.
Follow up:
Could you do it without using any loop / recursion?

常规解题手段:

算法1:

//k在这两题中分别取2和3
public class Solution {
    public boolean isPowerOfK(int n,int k) {
        if (n < 1) {
            return false;
        }

        while (n % k == 0) {
            n /= k;
        }

        return n == 1;    
    }
}

其中231.Power of Three可以利用二进制进行求解。在对问题没有思路的时候,我们可以heuristic,很自然的想法我们把十进制的数表示成二进制,例如:

1 -> 0001
2 -> 0010
4 -> 0100
8 -> 1000

由此,我们可以简单猜测它power of two,就是在二进制中,出现其中1位是1的情况,其他均为0。有了这猜测,我们只需要从数学上论证它是正确的即可,这里就不再论证了,答案显而易见。我们给出另一种解法。

算法2:

//只针对2的情况
public class Solution {
    public boolean isPowerOfTwo(int n){
            int count =0;
            while (n >0){
                count += (n&(0x01));
                n >>=1;
            }
            return count ==1;
        }
}

那么对于236题,同样适用嘛?吼吼,咱们继续heuristic下,例如

1 -> 0001
3 -> 0011
9 -> 1001
27 -> 11011

这规律不太对啊,嗯,在二进制中你着实找不到关于power of Three的一般规律。由此,上述这算法并非是通用的。那应该怎么办呢?power of Two和power of Three真的没有一点联系嘛?

我们换个维度考虑问题,所给的数都是十进制的数,而算法2.是把十进制的数映射到了二进制上,因为我们求的是power of Two,那么我们就必须映射到二进制上去嘛?为什么我们会自然而然的把十进制映射到二进制上去,至少我在得知这种解法时,脑中出现的第一反应是计算机是天然的用二进制来表达任何东西的。然而思维的局限性由此产生,想着同样的power of Three就一定要映射到二进制去解决嘛?由此,我得出两个结论:

  • 问题的本质或者说算法的求解不应该局限于计算机固有的属性,它是游离于计算机体系之外的,只是我们在实际编写代码时,需要考虑计算机体系知识而已。
  • 分析问题一定要抓住关键点,power of Two只是一般模式中的一个特例而已,如果单纯的为这个特例设计算法,那么每当遇到新的问题时,往往苦恼不堪,因为并没有抽象出通解。

回到上述问题,原本并非想着要写出power of Two 十进制到二进制的映射关系,但为了分析问题本质,也必须写一下。

以下是数学与程序的分割线


考虑power of Ten.你会发现,这个问题很容易解,因为在1,10,100,1000,…..,你只需要统计1出现的个数为1,且其它位都属于0即可。power of Two,我们是把数映射到了二进制表示法,同样地有:

i=0len(s)1s[i]2i

由此power of Three,我们就能想着是否只需要把十进制的power of Three映射到三进制上去即可,然后在三进制的表示域中找出它的规律,并求解答案:
i=0len(s)1s[i]3i

得到:

1 -> 000_001
3 -> 000_010
9 -> 000_100
27 -> 001_000

我一直在思考这种解法是如何被发现的,思考甚久,始终不得合理的解释。但我还是强行总结了一波,有兴趣的可以继续往下看,因为以下内容和都属于个人猜想,毫无依据可言,甚至是钻牛角尖的结果。

解释1:是那些博学,对数学敏感的那类人能够直接从大脑中构建出联系,灵感一瞬间闪现,被他们抓住解决了这个问题。

解释2:像我这样的人,没有天才般的大脑,但我们可以根据给定的解法进行反推,看看能否总结出有价值的抽象,即问题的本质。power of Ten,Two,Three,我们能想到什么?

10i,2i,3i,i=1,2,...,n

我们就拿 10i 举例说明,它的可能形式有1,10,100,1000,…这是什么东东?我们千万不能把它们想象成数字,一定要用符号去抽象。 1只是代表1的符号,10是“1”和“0”的组合而已。因此我们可以试着把1,10,100,1000,…写成b,ba,baa,baaa,…符合这样的形式即可。

符号?你能想到啥?不够, 10i 结合符号,还能想到啥?笛卡尔积!啊,什么!为什么是笛卡尔积,好吧,我也不知道为什么。或许学过离散数学的话,可能就有这样的联想吧,大脑就是个神奇的东西,无意之间就能把学到的一些知识联系在一块,从而推导出想要的结论。离散数学中有一章节关于关系的内容,什么是关系我们在这不去探讨,但我们知道一个集合,如:

{a,b,c}

它的笛卡尔积是什么?
{a,b,c}×{a,b,c}={aa,ab,ac,ba,bb,bc,ca,cb,cc}

这是二元关系的笛卡尔积,我们研究笛卡尔积的长度,已知集合中的元素个数为3,二元关系的笛卡尔积长度为 3×3=9 ,那么推广到n元关系笛卡尔积的长度则为 3n ,咦,power of Three,没错n元关系的笛卡尔积就表示power of Three,num = 3n. 当然这是因为集合的元素为3个的情况,集合元素个数为10的情况,则n元笛卡尔积的长度为 10n 。那为什么是笛卡尔积来代表这个问题的抽象呢?因为刚才我们从10得到了启发,1和0只是符号。那么该问题就由 3n 转换到集合元素个数为3的符号问题了,也就是从十进制转换到符号问题。

我们需要充分利用笛卡尔积的长度,来找到符号和 3n 的关系。这又需要费一番周折,可总能找到一些线索逼近答案。我是从计数进制原理得到启发,看下表:

  012345678910
一元笛卡尔积:abc
二元笛卡尔积:aaabacbabbbccacbcc
三元笛卡尔积:aaaaabaacabaabbabcacaacbaccbaabab

在进制的表示中,符号是存在冗余信息的。上述表格同样存在这种冗余信息,仔细看看我们的计数形式,从0-10对各个元素进行计数。我们可以简单的认为a=0,b=1,c=2,这是一元关系中的表现形式,然而在二元笛卡尔积中,我们认为aa =0,ab =1,ac =2,可直观上来说,a和aa表示不相等才比较合理。但不管如何,由此得,该集合的冗余长度为3,在三元笛卡尔积中,同理,前9个元素在二元笛卡尔积中都得到了表示,所以冗余长度为 32=9 ,神奇的事情发生了,二元笛卡尔积的冗余度,可以由一元笛卡尔积元素末尾的后一位表示,即ba =3,而三元笛卡尔积的冗余度,可以由该集合元素末尾的后一位表示,即baa = 9。

由上述结论,我们找到了 3n 和符号之间的关系了,我们只需要通过某种算法把num映射到 {a,b,c} 的某个n元关系的笛卡尔积上的某个元素,然后判断是否符合ba*的形式。

我想表达什么呢?这不是废话嘛,谁都能看出这种关系来,但试想着如果三进制的进位原理并不符合上表展现的那样,我们还能否简单的把它映射到三进制中去做嘛。如三进制的进位三元素{0,1,2}换成{1,2,3}单独把0当作一个元素,排除在进位原则外。(进位原理,后期再更新)

说了那么多其实这就是十进制转换三进制的问题,因为上表是符合三进制进位原则的。我们把 {a,b,c} 映射成 {0,1,2} ,所有问题迎刃而解。即公式:

i=0len(s)1s[i]3i


个人觉得上述,关于该算法的解释有点牵强,但有一点是我从归纳和总结中学到的,对于问题的求解,我们并不一定要在“十进制”领域去考虑,可以换一个相关域,两个域之间存在的联系是我们建立的映射关系的手段,而相关域的理论能够帮助我们解决问题,看透问题的本质以及扩展我们的思维。

  • 数一定是数嘛?它只是符号。
  • 数就没有其他表现形式了嘛?它一定是最合理的嘛?(符号冗余度为 kn ,k表示进制数,计数进制规则并非是最佳的。历史原因?0元素归并?)

有了上述规则,我们再实现我们的算法3。

算法3:

// power of Three
public class Solution {
    public boolean isPowerOfThree(int n) {
        return Integer.toString(n, 3).matches("^10*$");
    }
}

主要内容结束了,作为程序员,本着精益求精的精神,把leetCode中介绍的其他算法补充完整。

数学方法: n=3i

i=log3(n)=logb(n)logb(3)

判断 i 是否为整数即可。这是最直接了当的解法,俗称最终解,计算机一步得到结果。

算法4:

public class Solution {
    public boolean isPowerOfThree(int n) {
        return (Math.log10(n) / Math.log10(3)) % 1 == 0;
    }
}

但这是有问题的,因为在log10(n)/log10(3)中,计算机求得的实际解可能为5.0000001 or 4.9999999,所以我们还是用误差来优化该算法吧。

return (Math.log(n) / Math.log(3) + epsilon) % 1 <= 2 * epsilon;

至于leetCode官方提供的最后一种方法,暂时还未研究,等有时间再补充吧。

参考文献:

1.https://leetcode.com/articles/power-of-three/

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值