LWC 56:718. Maximum Length of Repeated Subarray

LWC 56:718. Maximum Length of Repeated Subarray

传送门:718. Maximum Length of Repeated Subarray

Problem:

Given two integer arrays A and B, return the maximum length of an subarray that appears in both arrays.

Example 1:

Input:
A: [1,2,3,2,1]
B: [3,2,1,4,7]
Output: 3
Explanation:
The repeated subarray with maximum length is [3, 2, 1].

Note:

  • 1 <= len(A), len(B) <= 1000
  • 0 <= A[i], B[i] < 100

思路:
和上周一样,还是一道动态规划题,如果对动规不熟悉,可以采用递归+记忆化搜索,本题亦如此。首先判断末位两个元素是否相等,不相等把A的问题规模变成n-1,和B求出最长subarray长度,或者把B的问题规模变成m-1,和A求出最长subarray。

遇到相等该如何操作,自然在子问题n-1,和m-1基础上+1,(问题的定义如下:给定A和B的末区间i和j,返回A[0,…,i]和B[0,…,j]中以i和j结尾的最长subArray长度),

所以有如下递归式:

f(A, B, i, j) = 1 + f(A, B, i - 1, j - 1); if (A[i] == B[j])

or:
f(A, B, i, j) = 0;

此时就可以用数组dp记录每个状态的最长subArray长度,并在过程中不断更新max。

代码如下:

   public int findLength(int[] A, int[] B) {
        max = 0;
        int n = A.length;
        int m = B.length;
        dp = new int[n + 1][m + 1];
        for (int i = 0; i < n + 1; ++i) {
            for (int j = 0; j < m + 1; ++j) {
                dp[i][j] = -1;
            }
        }
        dfs(A, B, n - 1, m - 1);
        return max;
    }


    int[][] dp;
    int max = 0;
    int dfs(int[] A, int[] B, int n, int m) {
        if (n == -1 || m == -1) return 0;
        if (dp[n][m] >= 0) return dp[n][m];

        dfs(A, B, n - 1, m);
        dfs(A, B, n, m - 1);

        if (A[n] == B[m]) {
            int ans = 1;
            int sub = dfs(A, B, n - 1, m - 1);

            max = Math.max(max, ans + sub);
            dp[n][m] = ans + sub;
            return ans + sub;
        }
        else {
            dp[n][m] = 0;
            return 0;
        }
    }

注意此处,0也是可能的一种答案,所以DP初始化为-1,否则超时。

递推版本(动态规划):

        public int findLength(int[] A, int[] B) {
            int n = A.length;
            int m = B.length;
            int max = 0;
            int[][] dp = new int[n + 1][m + 1];

            for (int i = 1; i <= n; ++i) {
                for (int j = 1; j <= m; ++j) {
                    if (A[i - 1] == B[j - 1]) {
                        dp[i][j] = dp[i - 1][j - 1] + 1;
                    }
                    else {
                        dp[i][j] = 0;
                    }

                    max = Math.max(dp[i][j], max);
                }
            }

            return max;
        }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值