AI大模型在测试领域应用案例拆解:大模型驱动下的智能测试技术研究与落地(中国邮政储蓄银行)
导语:
在金融业数字化转型的浪潮中,测试环节的效率与质量矛盾愈发突出。传统人工测试依赖经验、耗时长,而大模型技术的引入却面临生成质量不稳定、学习成本高的难题。邮储银行用一套“技术+工程”组合拳,实现了智能测试的规模化落地。本文将从技术内核、落地逻辑、行业启示三个维度,拆解这场金融测试领域的AI革新。
一、技术破局:如何让大模型“听懂”金融测试?
邮储银行的智能测试方案核心在于“给大模型装方向盘”——通过三大技术调优,解决生成质量参差不齐的痛点。
1. 流程编排:像搭乐高一样拆解测试任务
-
早期方案痛点
单次输入生成用例,如同让大模型“闭卷考试”,易出现知识盲区。
-
现行方案升级
模拟人类思维分步拆解任务,构建“需求分析→功能点提取→测试点生成→用例编写”的流水线。
实际可结合推理模型(如DeepSeek-R1)进行任务拆解并直接输出用例。
-
效果
通过渐进式输入补充上下文,生成结果精准度显著提升。
补充:
早期尝试采用Fine-tuning技术对模型实施增量训练,但随着大模型参数规模扩大,成本急剧上升。邮储银行通过流程编排、Prompt优化、RAG检索增强技术+工程化构建技术调优方案,验证了当前阶段大模型应用以提示词优化和RAG为主的可行性。
2. Prompt优化:给AI一本“测试操作手册”
-
静动态结合设计
- 静态模板:明确角色设定(如“资深测试工程师”)、任务步骤、输出规范
- 动态注入:实时插入RAG检索知识、中间产物(如需求切片)、优质示例
-
关键优化策略
- Few-Shot:提供优秀示例帮助模型理解任务目标
- COT(Chain-of-Thought):通过中间推理步骤提升复杂推理能力
3. RAG技术:打造测试领域的“知识库补给包”
- 构建3大知识库
- 项目知识库:需求规格说明书、历史用例、原型图等
- 业务知识库:业务术语、用户手册、操作指南等
- 测试知识库:测试规范、用例模板、验证要点等
- 价值:解决传统测试依赖个人经验的问题,提升测试制品规范性和精准度
二、落地逻辑:从实验室到生产线的“最后一公里”
通过工程化思维实现两大跨越:
1. 智能测试服务体系
- 前端:与测试管理平台深度集成,提供无感知AI服务
- 中台:流量控制、模型调度、知识库调用三大引擎
- 后端:支持商业/开源大模型灵活切换
2. 场景化应用
- 需求分析→用例生成(耗时缩短70%)
- 自动化脚本生成(代码准确率超85%)
- 测试报告生成(关键指标自动提取)
- 智能问答(解决90%+常见问题)
三、行业启示:金融业AI落地的“邮储范式”
-
“分阶段推进”策略
- 早期Fine-tuning试水 → 转向Prompt+RAG轻量化方案
- 验证“巧用知识增强”比“重训练”更高效
-
领域知识库是护城河
- 金融测试规范性要求高,私有化知识库构建是AI落地关键
-
工程化思维破局规模化
- 通过“沉浸式AI服务”降低使用门槛
四、未来战场:从工具到智能体的进化
邮储银行规划下一代智能测试蓝图:
- 测试智能体(Agent):AI自主拆解任务、执行测试、反馈结果的全流程自动化(未完待续)
注:本文案例来自中国邮政储蓄银行智能测试实践,相关技术资料可通过关注公众号【关于那些的个人观点】获取。