如何在去掉空数据及如何在matplotlib中显示数据线性拟合

import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
def error(f,x,y):
    return sp.sum((f(x)-y)**2)


data = sp.genfromtxt('web_traffic.tsv',delimiter='\t')  
x = data[:,0]
y = data[:,1]
x = x[~sp.isnan(y)]   
y = y[~sp.isnan(y)]


plt.scatter(x,y)
plt.title('Web traffic over the last month')
plt.xlabel('Time')
plt.ylabel('Hits/hour')
plt.xticks([w*7*24 for w in range(10)],['week %i' %w for w in range(10)])
plt.autoscale(tight = True)
plt.grid()
fp1,residuals,rank,sv,rcond= sp.polyfit(x,y,1,full=True)
print("残差:",residuals)
print('Model parameter:',fp1)
f1 = sp.poly1d(fp1)
print(error(f1,x,y))
fx = sp.linspace(0,x[-1],1000)
plt.plot(fx,f1(fx),linewidth=4,color='red')
plt.legend(['d=%i' %f1.order],loc = 'upper left')
plt.show()
### 回答1: Python是一款功能强大的编程语言和计算工具,可以用它来进行数据分析和绘图。在处理Excel数据时,Python有许多库可以帮助我们读取和处理Excel数据,例如pandas和openpyxl。 数据拟合曲线绘制是一项在Excel数据分析非常重要的任务。在Python,我们可以使用SciPy这个科学计算库来进行数据拟合。SciPy库提供了很多内置的拟合函数,比如最小二乘法拟合、非线性最小二乘法拟合等。 接下来,我们可以使用matplotlib这个绘图库对拟合曲线进行可视化。matplotlib库可以帮助我们生成各种图表,包括折线图、散点图和曲线图等。 使用Python进行Excel数据拟合曲线绘制的基本流程如下: 1. 读取Excel数据:使用pandas或openpyxl库读取Excel数据。 2. 数据处理:对数据进行清洗和处理,例如去除空值、重新排序或转换数据类型。 3. 数据拟合:使用SciPy库的拟合函数对数据进行拟合,并得到拟合曲线的参数。 4. 曲线绘制:使用matplotlib库绘制拟合曲线图。 总的来说,使用Python进行Excel数据拟合曲线绘制可以更加高效、自动化和灵活地完成数据分析和可视化任务。而且Python拥有强大的社区支持和广泛的应用场景,可以满足各种需求。 ### 回答2: Python是一门高级编程语言,它的应用非常广泛,其之一就是使用Python来处理和分析数据。Excel是一个常用电子表格软件,其大量的数据可以使用Python进行分析处理,然后通过Python来绘制拟合曲线。 在Python,可以使用pandas DataFrame来读取Excel数据,并使用numpymatplotlib等库对数据进行处理和可视化。对于拟合曲线,SciPy库的curve_fit函数可以实现拟合功能,具体步骤如下: 1.读取Excel文件并将数据导入pandas DataFrame; 2.使用matplotlib库绘制原始数据的散点图; 3.使用NumPy的polyfit函数对数据进行多项式拟合,通过指定多项式的次数,返回拟合的系数; 4.使用curve_fit函数来进行非线性拟合,需要给出要拟合的函数模型,以及数据的自变量和因变量,在得到拟合的参数后,可以使用matplotlib绘制拟合曲线。 在进行数据拟合曲线绘制时,需要注意选择适当的拟合模型,合理地选择拟合方式和参数,以充分利用数据的信息。同时,在使用Python进行数据分析时,不仅需要掌握Python语言本身的基本知识,还需要熟悉相关的数学理论和算法,以提高数据分析与处理的效率和准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值