Apple Tree - POJ 3321 树状数组+离散化+N叉树

这篇博客探讨了一个关于苹果树的数学问题,详细解释了如何通过深度优先搜索(DFS)离散化来解决苹果数量变化的问题。文章提供了解决方案的代码,包括建树方法、使用树状数组进行查询和更新操作,以及处理苹果数量增减的逻辑。

Apple Tree
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 17962 Accepted: 5450

Description

There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow in the tree. Kaka likes apple very much, so he has been carefully nurturing the big apple tree.

The tree has N forks which are connected by branches. Kaka numbers the forks by 1 to N and the root is always numbered by 1. Apples will grow on the forks and two apple won't grow on the same fork. kaka wants to know how many apples are there in a sub-tree, for his study of the produce ability of the apple tree.

The trouble is that a new apple may grow on an empty fork some time and kaka may pick an apple from the tree for his dessert. Can you help kaka?

Input

The first line contains an integer N (N ≤ 100,000) , which is the number of the forks in the tree.
The following N - 1 lines each contain two integers u and v, which means fork u and fork v are connected by a branch.
The next line contains an integer M (M ≤ 100,000).
The following M lines each contain a message which is either
"x" which means the existence of the apple on fork x has been changed. i.e. if there is an apple on the fork, then Kaka pick it; otherwise a new apple has grown on the empty fork.
or
"x" which means an inquiry for the number of apples in the sub-tree above the fork x, including the apple (if exists) on the fork x
Note the tree is full of apples at the beginning

Output

For every inquiry, output the correspond answer per line.

Sample Input

3
1 2
1 3
3
Q 1
C 2
Q 1

Sample Output

3
2


题意:先给你每次节点的连接方式,一开始每个节点上都有苹果,然后问你某个节点及其子树一共有多少个苹果,期间某个节点的苹果可能会被摘下,或又长出来。

思路:dfs离散化,如果网上其他的题解看不懂是怎么建树的话,我这个方法应该比较容易懂。

          先说一下如何建树。

        比如                   1                 这棵树(对应一下),变成                    1

                     2            3          4                                                      2            5          9

                 5    6        7   8        9                                                 3    4        6   8        10

                                10                                                                              7 

         这样类似于先序的排列。

         然后比如问改后的5节点,就是5-8的和,1就是1-10的和。

         我是struct node { }其中的u和v代表父子连接方式然后按照u第一元素从小到大,v第二元素从小到大排序后放在数组里,这样方便记录某个节点下有哪些子节点。注意每个节点下可能有多个子节点……最开始因为这个WA了无数次。

AC代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct node
{ int val,u,v,sonnum,begin,max;//val有无苹果,uv父子节点,sonnum子节点数量,
                               //begin,num2[]中从哪个开始时它的连接方式
                               //max记录某个点下面最大的子节点是多少,用于树状数组求和
}tree[100010];   //tree[]一做两用,排序uv和记录某个节点下有哪些子节点
int a[100010];
int num1[100010];
int num2[100010];
int n,m,pos,u,v;
char s[10];
int lowbit(int x)
{ return x&(-x);
}
void update(int x,int val)
{ while(x<=100000)
  { a[x]+=val;
    x+=lowbit(x);
  }
}
int sum(int x)
{ int ret=0;
  while(x)
  { ret+=a[x];
    x-=lowbit(x);
  }
  return ret;
}
bool cmp(node a,node b)
{ if(a.u<b.u)
   return true;
  else if(a.u==b.u)
    return a.v<b.v;
  else
    return false;
}
void dfs(int k)
{ num1[k]=++pos;
  for(int i=tree[k].begin;i<tree[k].begin+tree[k].sonnum;i++)//从左到右dfs
   dfs(num2[i]);
  tree[k].max=pos;//记录某个点下面最大的子节点是多少,用于树状数组求和
}
int main()
{ int k,i,j,father,ans=0,num;
   scanf("%d",&n);
  for(i=1;i<=n;i++)
  { update(i,1);tree[i].val=1;}
  for(i=1;i<n;i++)
   scanf("%d%d",&tree[i].u,&tree[i].v);
  sort(tree+1,tree+n,cmp);
  father=1;
  tree[1].begin=1;
  for(i=1;i<n;i++)
  { if(tree[i].u==father)
    { tree[father].sonnum++;
      num2[i]=tree[i].v;
    }
    else
    { father=tree[i].u;
      tree[father].begin=i;
      tree[father].sonnum++;
      num2[i]=tree[i].v;
    }
  }
  pos=0;
  dfs(1);
  scanf("%d",&m);
  for(j=1;j<=m;j++)
  { scanf("%s",s);
    scanf("%d",&k);
    if(s[0]=='Q')
    { ans=sum(tree[k].max)-sum(num1[k])+tree[k].val;
      printf("%d\n",ans);
    }
    else
    { if(num1[k]!=0)
      if(tree[k].val==1)
      { update(num1[k],-1);
        tree[k].val=0;
      }
      else
      { update(num1[k],1);
        tree[k].val=1;
      }
    }
  }
}



内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值