Rip Van Winkle's Code - UVa 12436 线段树

Rip Van Winkle was fed up with everything except programming. One day he found a problem which required to perform three types of update operations (A, B, C), and one query operation S over an array data[]. Initially all elements of data are equal to 0. Though Rip Van Winkle is going to sleep for 20 years, and his code is also super slow, you need to perform the same update operations and output the result for the query operation S in an efficient way.

long long data[250001];

void A( int st, int nd ) {
    for( int i = st; i <= nd; i++ ) data[i] = data[i] + (- st + 1);
}
void B( int st, int nd ) {
    for( int i = st; i <= nd; i++ ) data[i] = data[i] + (nd - i + 1);
}
void C( int st, int nd, int x ) {
    for( int i = st; i <= nd; i++ ) data[i] = x;
}
long long S( int st, int nd ) {
    long long res = 0;
    for( int i = st; i <= nd; i++ ) res += data[i];
    return res;
}

Input

The first line of input will contain T (≤ 4*105) denoting the number of operations. Each of the next T lines starts with a character ('A', 'B', 'C' or 'S'), which indicates the type of operation. Character 'A', 'B' or 'S' will be followed by two integers, st and nd in the same line. Character 'C' is followed by three integers, st, nd and x. It's assumed that, 1 ≤ st ≤ nd ≤ 250000 and -105 ≤ x ≤ 105. The meanings of these integers are explained by the code of Rip Van Winkle.

Output

For each line starting with the character 'S', print S( st, nd ) as defined in the code. Dataset is huge, so use faster I/O methods.

Sample Input

Output for Sample Input

7
A 1 4
B 2 3
S 1 3
C 3 4 -2
S 2 4
B 1 3
S 2 4
9
0
3


题意:三种操作,A是从l到r增加一个从1、2、3...B是从l到r增加r-l+1,r-l,r-l-1...C是从l到r赋值为x,S询问l到r的和

思路:在一个节点处,记录这个节点中到l到r的等差数列的第一个数,和等差,因为等差数列家伙说那个等差数列还是等差数列。然后赋值的操作优先于等差的操作,每次向下更新时,如果一个节点的子节点有赋值,先处理子节点的赋值,避免出现先赋值后加上等差这样的混乱情况。

AC代码如下:

#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
struct node
{
    int l,r;
    ll a,b,c,sum;
    bool flag1,flag2;
}tree[2000010];
char s[10];
void build(int o,int l,int r)
{
    tree[o].l=l;
    tree[o].r=r;
    tree[o].flag1=tree[o].flag2=0;
    if(l==r)
      return;
    int mi=(l+r)/2;
    build(o<<1,l,mi);
    build(o<<1|1,mi+1,r);
}
void down(int o)
{
    //printf("%d %d %d  %d %d    %d %d %d\n",o,tree[o].l,tree[o].r,tree[o].flag1,tree[o].flag2,tree[o].a,tree[o].b,tree[o].c);
    if(tree[o].l==tree[o].r)
    {
        tree[o].flag1=tree[o].flag2=0;
        return;
    }
    if(tree[o].flag2)
    {
        tree[o].flag1=tree[o].flag2=0;
        tree[o<<1].flag2=tree[o<<1|1].flag2=1;
        tree[o<<1].a=tree[o<<1|1].a=0;
        tree[o<<1].b=tree[o<<1|1].b=0;
        tree[o<<1].c=tree[o<<1|1].c=tree[o].c;
        tree[o<<1].sum=tree[o].c*(tree[o<<1].r-tree[o<<1].l+1);
        tree[o<<1|1].sum=tree[o].c*(tree[o<<1|1].r-tree[o<<1|1].l+1);
    }
    else if(tree[o].flag1)
    {
        if(tree[o<<1].flag2)
          down(o<<1);
        if(tree[o<<1|1].flag2)
          down(o<<1|1);
        tree[o].flag1=0;
        tree[o<<1].flag1=tree[o<<1|1].flag1=1;
        tree[o<<1].a+=tree[o].a; tree[o<<1].b+=tree[o].b;
        tree[o<<1|1].a+=tree[o].a+(tree[o<<1|1].l-tree[o<<1].l)*tree[o].b; tree[o<<1|1].b+=tree[o].b;
        tree[o<<1].sum+=(tree[o].a*2+(tree[o<<1].r-tree[o<<1].l)*tree[o].b)*(tree[o<<1].r-tree[o<<1].l+1)/2;
        tree[o<<1|1].sum+=((tree[o].a+(tree[o<<1|1].l-tree[o<<1].l)*tree[o].b)*2+(tree[o<<1|1].r-tree[o<<1|1].l)*tree[o].b)*(tree[o<<1|1].r-tree[o<<1|1].l+1)/2;
        tree[o].a=tree[o].b=0;
    }
}
void update1(int o,int l,int r,ll val,ll fen)
{
    //printf("%d %d %d  %d %d\n",o,l,r,tree[o].l,tree[o].r);
    down(o);
    if(tree[o].l==l && tree[o].r==r)
    {
        tree[o].a+=val;
        tree[o].b+=fen;
        tree[o].sum+=(val*2+(r-l)*fen)*(r-l+1)/2;
        tree[o].flag1=1;
        return;
    }
    int mi=(tree[o].l+tree[o].r)/2;
    if(r<=mi)
      update1(o<<1,l,r,val,fen);
    else if(l>mi)
      update1(o<<1|1,l,r,val,fen);
    else
    {
        update1(o<<1,l,mi,val,fen);
        update1(o<<1|1,mi+1,r,val+(mi+1-l)*fen,fen);
    }
    tree[o].sum=tree[o<<1].sum+tree[o<<1|1].sum;
}
void update2(int o,int l,int r,ll val)
{
    down(o);
    if(tree[o].l==l && tree[o].r==r)
    {
        tree[o].c=val;
        tree[o].flag2=1;
        tree[o].sum=val*(r-l+1);
        return;
    }
    int mi=(tree[o].l+tree[o].r)/2;
    if(r<=mi)
      update2(o<<1,l,r,val);
    else if(l>mi)
      update2(o<<1|1,l,r,val);
    else
    {
        update2(o<<1,l,mi,val);
        update2(o<<1|1,mi+1,r,val);
    }
    tree[o].sum=tree[o<<1].sum+tree[o<<1|1].sum;
}
ll query(int o,int l,int r)
{
    down(o);
    if(tree[o].l==l && tree[o].r==r)
      return tree[o].sum;
    int mi=(tree[o].l+tree[o].r)/2;
    if(r<=mi)
      return query(o<<1,l,r);
    else if(l>mi)
      return query(o<<1|1,l,r);
    else
      return query(o<<1,l,mi)+query(o<<1|1,mi+1,r);
}
int main()
{
    int n,m,i,j,k,l,r;
    ll val;
    build(1,1,250000);
    scanf("%d",&n);
    while(n--)
    {
        scanf("%s%d%d",s,&l,&r);
        if(s[0]=='A')
          update1(1,l,r,1,1);
        else if(s[0]=='B')
          update1(1,l,r,r-l+1,-1);
        else if(s[0]=='C')
        {
            scanf("%lld",&val);
            update2(1,l,r,val);
        }
        else
          printf("%lld\n",query(1,l,r));
        //for(i=1;i<=4;i++)
        //   printf("%lld ",query(1,i,i));
        //printf("\n");
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值