android14优化ntp时间同步

简介

网络时间协议NTP(Network Time Protocol)是TCP/IP协议族里面的一个应用层协议,用来使客户端和服务器之间进行时钟同步,提供高精准度的时间校正。
当机器的ntp时间同步出现问题时,可以从ntp配置方面进行优化,以提高ntp时间同步的速度。

android ntp配置

本代码基于android14。
ntp服务配置位于frameworks/base/core/res/res/values/config.xml,从config中看到可自由配置以下选项

  • ntpServers
  • ntpTimeOut
  • ntpPollingInterval
  • ntpPollingIntervalShorter
  • ntpRetry
    在这里插入图片描述

android ntp优化

优化就是参考上面的ntp配置,修改参数即可。最主要的优化还是配置ntp服务器,添加几个就近的ntp服务器实现快速同步。
可以直接修改frameworks/base/core/res/res/values/config.xml,也可以以overLay的形式,推荐overLay形式写在不同的产品里。
这里上一个我的overlay形式的优化:

  • 在project目录里新建overlay目录
  • 在overlay目录中新建frameworks/base/core/res/res/values/config.xml(要保留原始的目录结构)在这里插入图片描述
  • 修改项目的mk文件,一般与overlay目录同级,新增PRODUCT_PACKAGE_OVERLAYS += $(LOCAL_PATH)/$(BUILD_BRAND)/overlay

参考

https://source.android.google.cn/docs/core/connect/time/network-time-detection?hl=zh-cn
https://info.support.huawei.com/info-finder/encyclopedia/zh/NTP.html
https://www.cnblogs.com/bluestorm/p/16987248.html

内容概要:本文档《opencv高频面试题.docx》涵盖了OpenCV的基础概念、图像处理操作、特征提取与匹配、目标检测与机器学习、实际编程题、性能优化以及进阶问题。首先介绍了OpenCV作为开源计算机视觉库,支持图像/视频处理、目标检测、机器学习等领域,应用于安防、自动驾驶、医学影像、AR/VR等方面。接着详细讲述了图像的存储格式(如Mat类)、通道的概念及其转换方法。在图像处理部分,讲解了图像灰度化、二值化、边缘检测等技术。特征提取方面,对比了Harris和Shi-Tomasi角点检测算法,以及SIFT、SURF、ORB的特征提取原理和优缺点。目标检测部分介绍了Haar级联检测原理,并阐述了如何调用深度学习模型进行目标检测。文档还提供了几个实际编程题示例,如读取并显示图像、图像旋转、绘制矩形框并保存等。最后,探讨了性能优化的方法,如使用cv2.UMat(GPU加速)、减少循环等,以及相机标定、光流等进阶问题。 适合人群:对计算机视觉有一定兴趣,具备一定编程基础的学习者或从业者。 使用场景及目标:①帮助学习者掌握OpenCV的基本概念和技术;②为面试准备提供参考;③为实际项目开发提供技术指导。 阅读建议:由于内容涵盖广泛,建议读者根据自身需求有选择地深入学习相关章节,并结合实际编程练习加深理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值