分数表示法

我们知道整数是可以用整数加分数的形式表示的,例如5=3+9562/4781=3+9712/4856=3+2956/1478=3+9172/4586=2+9762/3254等等 其中1~9只在前4种的整数部分和分子分母出现且只出现一次,我们求这样的式子的个数即test(x),其中65535>x>0,例如test(5)=4。 输入描述: 输入的第一行是一个整数N<10000,表示数据组数,接下来N行,每行包含一个正整数x。 输出描述: 对于每个x,输出test(x)。

根据本题要求,需要对1-9进行全排列,然后在处理筛选出符合要求的数。首先 说全排列问题,要用到next_permutation()函数,有关讲解请看http://blog.csdn.net/u014794992/article/details/40370817

下面直接在代码中有讲解:

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int l[65535+5]= {0};
void cn(int a[])//本题x最大取值为65535为5位数,表达式为x==a+b/c
{//i,j,k表示长度/位数
    for(int i = 1 ; i <= 5 ; i ++) //i表示a的位数,最大为5位,
        for(int j = 1; j <= 8 - i ; j++){//本题一共有9位数,分母c不能为0,至少占一位数
            //因此b的位数最大范围为8-i
            int k = 9 - i - j;//当a和b的位数确定后,剩下的为C的位数,9-i-j
            if(j<k)//b/c必为整数,因此b的位数若小于c直接跳过
                continue;
            int x = 0, y =0 ,z = 0;//设x,y,z 表示a,b,c的值
            for(int t = 0 ; t < i ; t++){//求x值过程
                x*=10;
                x+=a[t];
            }
            for(int p = i ,q = 0 ; q < j ; q++,p++ ){//求y
                y*=10;
                y+=a[p];
            }
            for(int r = i+j ,s = 0 ; s < k ; s++,r++){//求z
                z*=10;
                z+=a[r];
            }
            if(y%z!=0) continue;//若y/z不能整除,进行下一次计算
            if(x+y/z <= 65535){//符合条件
                l[x+y/z]++;  //统计次数+1
            }
        }
}
void text()//用next_permutation()求1-9的全排列
{
    int f[10]= {1,2,3,4,5,6,7,8,9};
    do{
        cn(f);
    }
    while(next_permutation(f,f+9));
}
int main()
{
    int n,x;
    memset(l,0,sizeof(l));
    text();//打表
    while(scanf("%d",&n)!=EOF)
    {
        while(n--)
        {
            scanf("%d",&x);
            printf("%d\n",l[x]);
        }
    }
    return 0;
}


<think>好的,我现在需要回答用户的问题:“C++分数怎么表示”。用户之前已经问过关于C++中除法保留小数的问题,现在可能是在继续学习如何处理数值运算,特别是分数的表示。我需要先理解用户的需求,然后组织一个清晰、详细的回答。 首先,用户想知道如何在C++中表示分数分数通常涉及分子和分母,比如1/2或3/4。C++本身没有内置的分数类型,所以需要自己实现或者使用现有的库。根据用户之前的提问,他们可能希望了解多种方法,包括基础的手动实现和更高级的库使用。 接下来,我需要考虑不同的方法来表示分数: 1. **结构体或类**:创建一个包含分子和分母的结构体或类,并实现基本的运算如加减乘除,以及约分功能。这是最基础的方法,适合教学目的,但需要用户自己处理各种细节,比如运算符重载和错误处理(比如分母为零的情况)。 2. **使用STL或标准库**:C++标准库中没有直接的分数类型,但可以通过数值类型和算法来处理分数运算,比如使用`std::pair`来存储分子和分母,并结合GCD算法来约分。这可能不够直观,但可以利用现有库函数简化部分逻辑。 3. **第三方库**:如Boost库中的`boost::rational`,这是一个成熟的分数处理库,提供了丰富的功能和运算符重载,适合需要高效和可靠解决方案的情况。用户可能需要安装和配置Boost库,但这是最推荐的方法之一。 4. **手动字符串处理**:将分数作为字符串处理,解析分子和分母,并进行运算。这种方法可能比较复杂且容易出错,不太推荐,但可以作为扩展内容提及。 接下来,我需要确定回答的结构。通常用户希望有逐步的说明,包括代码示例和注意事项。需要确保回答覆盖不同的实现方法,从简单到复杂,并指出优缺点。 需要注意用户可能的疑问点: - 如何处理分母为零的情况? - 如何实现分数的约分? - 运算符重载的具体实现? - 如何输出分数? - 第三方库的安装和使用方法? 然后,我需要验证每种方法的正确性。例如,结构体方法中,必须确保在构造函数中处理分母为零的异常,并在运算后进行约分。使用`std::pair`时,需要结合`std::gcd`来计算最大公约数,这在C++17及以上版本中可用。对于Boost库,需要确保用户了解如何安装和包含正确的头文件。 可能还需要比较不同方法的优缺点,比如手动实现的灵活性与第三方库的高效性和可靠性之间的权衡。此外,提醒用户注意浮点数与分数之间的转换可能带来的精度问题,比如浮点数无法精确表示某些分数。 最后,总结不同方法的应用场景,帮助用户根据需求选择合适的方法。比如,对于学习目的,手动实现结构体是有益的;对于实际项目,推荐使用Boost库。</think>在 C++ 中表示和操作分数(如 $\frac{3}{4}$ 或 $\frac{5}{2}$)需要自定义实现或依赖第三方库,因为标准库未提供原生的分数类型。以下是详细的实现方法及示例: --- ### **1. 基础方法:自定义结构体/类** 通过定义包含**分子**和**分母**的结构体,并手动实现运算逻辑: #### **步骤 1:定义分数结构体** ```cpp #include <iostream> #include <algorithm> // 用于计算最大公约数(GCD) struct Fraction { int numerator; // 分子 int denominator; // 分母 // 构造函数(自动约分) Fraction(int num, int den) : numerator(num), denominator(den) { if (den == 0) throw "分母不能为0!"; // 错误处理 simplify(); // 构造时自动约分 } // 约分函数(核心) void simplify() { int gcd = std::gcd(numerator, denominator); // C++17起支持std::gcd numerator /= gcd; denominator /= gcd; if (denominator < 0) { // 确保分母始终为正 numerator *= -1; denominator *= -1; } } // 运算符重载:加法 Fraction operator+(const Fraction& other) const { int new_num = numerator * other.denominator + other.numerator * denominator; int new_den = denominator * other.denominator; return Fraction(new_num, new_den); } // 其他运算符(减、乘、除)类似实现... }; ``` #### **步骤 2:使用示例** ```cpp int main() { try { Fraction a(3, 4); // 3/4 Fraction b(5, 6); // 5/6 Fraction c = a + b; // 3/4 + 5/6 = 19/12 std::cout << "结果: " << c.numerator << "/" << c.denominator << std::endl; } catch (const char* msg) { std::cerr << "错误: " << msg << std::endl; } return 0; } ``` **输出**: ``` 结果: 19/12 ``` --- ### **2. 使用标准库工具(`std::pair` + 算法)** 若不想定义结构体,可用 `std::pair<int, int>` 临时表示分数,并手动处理运算: #### **示例代码** ```cpp #include <iostream> #include <utility> // std::pair #include <numeric> // std::gcd // 约分函数 void simplify(int& num, int& den) { int gcd = std::gcd(num, den); num /= gcd; den /= gcd; if (den < 0) { num *= -1; den *= -1; } } int main() { int num1 = 3, den1 = 4; // 3/4 int num2 = 5, den2 = 6; // 5/6 // 加法运算:a/b + c/d = (ad + bc)/bd int new_num = num1 * den2 + num2 * den1; int new_den = den1 * den2; simplify(new_num, new_den); std::cout << "结果: " << new_num << "/" << new_den << std::endl; return 0; } ``` --- ### **3. 使用第三方库(推荐)** #### **(1) Boost.Rational** Boost 库提供了高性能的 `boost::rational<T>` 类型,支持任意整数类型的分数运算。 **安装与使用**: ```cpp #include <boost/rational.hpp> #include <iostream> int main() { boost::rational<int> a(3, 4); // 3/4 boost::rational<int> b(5, 6); // 5/6 boost::rational<int> c = a + b; std::cout << "结果: " << c.numerator() << "/" << c.denominator() << std::endl; return 0; } ``` #### **(2) 其他库** - **GMP(GNU
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值