1.题目描述:点击打开链接
2.解题思路:本题要求计算每对结点的最短路长度之和,以及删除一条边后最大的c值。前者直接用Dijkstra算法即可得到。问题是如何高效求解后者。这里可以利用最短路树来求解。可以证明,如果删除的边不在最短路树上,那么最短路树上的边到源点的最短路是不变的。如果是最短路树上的边,就需要重新求解最短路,并累计和。对于每个源点,只需要求解n次单源最短路,因此总的时间复杂度为O(N^2MlogN)。
3.代码:
#include<iostream>
#include<algorithm>
#include<cassert>
#include<string>
#include<sstream>
#include<set>
#include<bitset>
#include<vector>
#include<stack>
#include<map>
#include<queue>
#include<deque>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#include<cctype>
#include<list>
#include<complex>
#include<functional>
using namespace std;
#define me(s) memset(s,0,sizeof(s))
#define rep(i,n) for(int i=0;i<(n);i++)
#define pb push_back
typedef long long ll;
typedef pair <int,int> P;
const int INF=1e9;
const int N=100+10;
struct Edge{int from,to,dist;};
struct Dijkstra
{
int n,m;
vector<Edge>edges;
vector<int>g[N];
int d[N],p[N];
void init(int n)
{
this->n=n;
rep(i,n)g[i].clear();
edges.clear();
}
void addedge(int u,int v,int dist)
{
edges.pb(Edge{u,v,dist});
m=edges.size();
g[u].pb(m-1);
}
void dijkstra(int s)
{
fill(d,d+n,INF);
d[s]=0;
priority_queue<P,vector<P>,greater<P> >q;
q.push(P(0,s));
while(!q.empty())
{
P x=q.top();q.pop();
int u=x.second;
if(d[u]<x.first)continue;
for(int i=0;i<g[u].size();i++)
{
int id=g[u][i];
Edge&e=edges[id];
if(e.dist>0&&d[e.to]>d[u]+e.dist)
{
d[e.to]=d[u]+e.dist;
p[e.to]=id;
q.push(P(d[e.to],e.to));
}
}
}
}
};
Dijkstra solver;
int n,m,L;
vector<int>g[N][N]; // 两点之间的原始边权
int used[N][N][N]; //used[src][a][b]表示源点为src的最短路树是否包含边a->b
int idx[N][N]; //idx[u][v]为边u->v在Dijkstra求解器中的编号
int sum_single[N]; // sum_single[src]表示源点为src的最短路树的所有d之和
int compute_c()
{
int ans=0;
me(used);
for(int src=0;src<n;src++)
{
solver.dijkstra(src);
sum_single[src]=0;
for(int i=0;i<n;i++)
{
if(i!=src)
{
int fa=solver.edges[solver.p[i]].from;
used[src][fa][i]=used[src][i][fa]=1;
}
sum_single[src]+=(solver.d[i]==INF?L:solver.d[i]);
}
ans+=sum_single[src];
}
return ans;
}
int compute_newc(int a,int b)
{
int ans=0;
for(int src=0;src<n;src++)
{
if(!used[src][a][b])
ans+=sum_single[src];
else
{
solver.dijkstra(src);
for(int i=0;i<n;i++)
ans+=(solver.d[i]==INF?L:solver.d[i]);
}
}
return ans;
}
int main()
{
while(~scanf("%d%d%d",&n,&m,&L))
{
solver.init(n);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
g[i][j].clear();
for(int i=0;i<m;i++)
{
int a,b,s;
scanf("%d%d%d",&a,&b,&s);a--,b--;
g[a][b].pb(s);
g[b][a].pb(s);
}
for(int i=0;i<n;i++)
for(int j=i+1;j<n;j++)
if(!g[i][j].empty())
{
sort(g[i][j].begin(),g[i][j].end());
solver.addedge(i,j,g[i][j][0]);
idx[i][j]=solver.m-1;
solver.addedge(j,i,g[i][j][0]);
idx[j][i]=solver.m-1;
}
int c=compute_c();
int c2=-1;
for(int i=0;i<n;i++)
for(int j=i+1;j<n;j++)
if(!g[i][j].empty())
{
int&e1=solver.edges[idx[i][j]].dist;
int&e2=solver.edges[idx[j][i]].dist;
if(g[i][j].size()==1)e1=e2=-1;
else e1=e2=g[i][j][1]; //大二短边
c2=max(c2,compute_newc(i,j));
e1=e2=g[i][j][0]; //恢复
}
printf("%d %d\n",c,c2);
}
}