HDU 5135 Little Zu Chongzhi's Triangles (2014年广州赛区现场赛I题)

1.题目描述:点击打开链接

2.解题思路:典型的状压dp题目,用集合S表示当前已经使用过的木棍的集合,那么有dp(S)=max{dp(S),S(i,j,k)+dp(S/{i,j,k})}。从小到大递推枚举集合即可。

3.代码:

#include<iostream>
#include<algorithm>
#include<cassert>
#include<string>
#include<sstream>
#include<set>
#include<bitset>
#include<vector>
#include<stack>
#include<map>
#include<queue>
#include<deque>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#include<cctype>
#include<list>
#include<complex>
#include<functional>
#define INF 0x3f3f3f3f
using namespace std;

#define me(s) memset(s,0,sizeof(s))
#define rep(i,n) for(int i=0;i<(n);i++)
#define pb push_back
typedef long long ll;
typedef pair <int,int> P;


const int N = 15;
const int MAXN = 1<<N;
double dp[MAXN];
double a[N];
int b[N];
int n;


double getS(int x, int y, int z)
{
	double p = a[x], q = a[y], r = a[z];
	double half = (p + q + r) / 2;
	return sqrt(half*(half - p)*(half - q)*(half - r));
}

int bitcount(int x)
{
	return !x ? 0 : bitcount(x / 2) + (x & 1);
}

bool ok(int s)
{
	if (bitcount(s) >= 3)return true;
	return false;
}
int main()
{
	while (~scanf("%d", &n) && n)
	{
		rep(i, n)scanf("%lf", &a[i]);
		me(dp);
		int ALL = 1 << n;
		for (int s = 1; s<ALL; s++)
			if (ok(s))
			{
				int cnt = 0;
				for (int i = 0; i < n; i++)
					if (s >> i & 1)
						b[cnt++] = i;
				for (int i = 0; i < cnt; i++)
					for (int j = i + 1; j < cnt; j++)
						for (int k = j + 1; k < cnt; k++)
						{
							int p = b[i], q = b[j], r = b[k];
							if (a[p] + a[q]>a[r] && fabs(a[p] - a[q]) < a[r])
							{
								int tmp = (1 << p) | (1 << q) | (1 << r);
								dp[s] = max(dp[s], dp[s&~tmp] + getS(p, q, r));
							}
						}
			}
		printf("%.2lf\n", dp[ALL - 1]);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值