LA4998 Simple Encryption

1.题目描述:点击打开链接

2.解题思路:本题是一道非常好的思维题。猛一看感觉好像没有什么特别好的方法,但是如果仔细观察这个方程,就会发现要求解的x实际上是一个不动点,只要找到了这个不动点,以后就会稳定的这个地方。所以可以一开始选择一个比10^12大的数,开始不停的迭代,直到是一个稳定点时候break即可。类似于牛顿法求高次方程的根。

3.代码:

#include<iostream>
#include<algorithm>
#include<cassert>
#include<string>
#include<sstream>
#include<set>
#include<bitset>
#include<vector>
#include<stack>
#include<map>
#include<queue>
#include<deque>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#include<cctype>
#include<complex>
#include<functional>
#pragma comment(linker, "/STACK:1024000000,1024000000")

using namespace std;

#define rep(i,n) for(int i=0;i<(n);i++)
#define me(s) memset(s,0,sizeof(s))
#define pb push_back
#define lid (id<<1)
#define rid (id<<1|1)
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> P;


const ll MOD=1e12;

ll mul(ll a,ll b)
{
    ll ite=(1ll<<20)-1;
    return (a*(b>>20)%MOD*(1<<20)%MOD+a*(b&ite)%MOD)%MOD;
}
ll pow_mod(ll a,ll b)
{
    ll res=1;
    while(b>0)
    {
        if(b&1)res=mul(res,a)%MOD;
        a=mul(a,a)%MOD;
        b>>=1;
    }
    return res;
}
ll solve(int k1,ll R)
{
    while(true)
    {
        ll tmp=pow_mod(k1,R);
        if(tmp==R)return R;
        R=tmp;
    }
}
int main()
{
    int k1;
    int rnd=0;
    while(~scanf("%d",&k1)&&k1)
    {
        ll R=1e12+7;
        ll ans=solve(k1,R);
        printf("Case %d: Public Key = %d Private Key = %lld\n",++rnd,k1,ans);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值