人工智能
u4110122855
1.熟悉 Spark、 ElasticSearch、 Kafka、 Solr、 Impala等分布式开源组件
2.熟悉 Spark、 MapReduce 计算框架和工作原理,了解Tez框架
3.熟悉 Scala、 Java、C/C++等编程语言,了解html语言
4.熟悉 Linux 操作系统,能够使用Shell脚本语言编程
5.灵活使用 MySql, Oracle, MS SQL Server 等关系数据库
6.熟悉 Cloudera Hadoop 和纯粹开源 Hadoop 版本的组件
7.有较为丰富的集群部署、开发和维护管理经验
展开
-
百万年薪的人才泡沫与人工智能的虚假繁荣
我们是不是正在像15年前迎来互联网泡沫那样,正在迎接人工智能的更大泡沫?作者:逍遥小妖应采访者要求,戴维、郑明、麦可、胡进、老邢均为化名。五月天,戴维穿着帽衫,瘦瘦高高,里面套着短袖,是最能适应早晚凉中午热的衣着。作为一个“科技圈人士”,他对热点话题一点感觉也没有,从没听说过共享充电宝,不知道上一轮资本寒冬是什么时候过去的;也不太关心自己的老同学去的那些公司,谁又融了多转载 2017-07-21 08:42:28 · 1016 阅读 · 0 评论 -
近200篇机器学习&深度学习资料分享(含各种文档,视频,源码等)
From:近200篇机器学习&深度学习资料分享(含各种文档,视频,源码等) - 推酷本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等。而且原文也会不定期的更新,望看到文章的朋友能够学到更多。《Brief History of Machine Learning》介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM、Adaboo转载 2017-09-20 17:06:08 · 4295 阅读 · 0 评论 -
行家 | 如何跨领域成为一位人工智能工程师?
作者/分享人 | 李嘉璇 《TensorFlow技术解析与实战》作者,InfoQ、51CTO、Oreilly Strata 等大会讲师,活跃于国内各大技术社区,知乎编程问题回答者。擅长研究深度学习框架的架构、源码分析及在不同领域的应用。有处理图像、社交文本数据情感分析、数据挖掘等深度学习实战经验,参与过基于深度学习的自动驾驶二维感知系统 Hackathon 竞赛, 曾任职百转载 2017-09-20 17:20:50 · 9824 阅读 · 0 评论 -
机器学习中的监督学习与非监督学习
机器学习中基本概念监督学习与非监督学习转载 2017-09-30 14:18:30 · 1013 阅读 · 0 评论 -
决策树和决策森林
概念回归是预测一个数值型数量,比如大小,收入和温度。而分类是指预测标号或类别,比如判断邮件是否为“垃圾邮件”,拼图游戏的图案是否是“猫”。回归问题的目标为数值型特征,而分类问题的目标为类别型特征。精确度是二元分类问题中一个常用的指标。精确度就是被标记为“正”而且确实是“正”的样本占所有标记为“正”的样本比例。召回率是被分类器标记为“正”的所有样本与所有本来就是“正”的样本的比率。转载 2017-10-09 10:49:32 · 991 阅读 · 0 评论 -
机器学习之工程师入门路线
相信想学习机器学习的广大工程师们已经被那些算法大神的言论虐的怕怕的了吧?不用担心,我来带你们理理一个工程师需要入门机器学习,到底要走哪个路线?一、 基础不用多说,机器学习作为高门槛领域,基础还是需要的,但是也没有想得那么恐怖,很多人提问机器学习需要哪些数学知识,然后就会得到一大堆犹如天书般高大上的回答: 矩阵分析、微积分、概率论、统计学、数学分析等等,如果按照这些算法大转载 2017-10-31 17:25:45 · 266 阅读 · 0 评论 -
知识图谱研究进展
相当不错的文章转载 2017-12-20 14:43:41 · 5622 阅读 · 0 评论