numpy-stl中文文档

最近使用了numpy-stl,现在对numpy-stl进行深入总结学习。 写这个文档的时候有些地方的理解还是不到位,姑且看之。


numpy-stl 是一个可以让你简单快捷地处理STL(和普通的3D对象)文件的简单库。
由于 numpy-stl 的所有操作都是重度依赖于 numpy 的,所以它是Python可使用的最快的用于STL编辑的库之一。

0 3D基础和相关概念

0.1 顶点、多边形、网格

顶点(vertex)一个点在空间中的位置,描述具有x、y、z坐标的空间位置。顶点就是在一个三维坐标系中的点。
多边形3个以上的顶点连接形成多边形。在3DMAX中,常见的概念是三角形面(triangle),也就是3个顶点形成的三角形区域。
网格(mesh)提供3D模型的底层结构。通常,网格看起来是由成千上万个单独的多边形框架结构组成的线框。3D模型通常至少包含一个网格,也可能包含多个网格。

3D图形是由3D网格构成的,网格也被称为模型。

0.2 材质、纹理、光源

光有网格模型看上去就是一个物品的轮廓,为了让模型具有真实感,我们就要为模型赋予材质和纹理。

纹理(texture)物体表面绘制的图案。
材质(materal)物体表面各可视属性的集合,可以看出物体是由什么材料组成的。这些可视属性是指表面的色彩、纹理、光滑度、透明度、反射率、折射率、发光度等。
光源(light)材质的表现必然依赖光源,光源不同,表现也会不同,没有光源就看不到物体,也就没有材质。

0.3 向量、矩阵

向量(vector)我们说一个模型就是一个对象。对象都有其位置和方向,在3D空间由x、y、z三个值来定义,在这里位置和方向都是向量。
矩阵(matrix)对象有了方向和位置后,要对其进行移动、缩放、旋转等处理就需要用到矩阵。

0.4 相机、透视、视口、投影

相机(camera)相当于在3D场景中的人的眼睛。
透视相机的一种显示效果,比如物体远小近大。
视口视觉窗口,由浏览器窗口或canvans决定。
投影(projection)3D坐标系列到2D渲染坐标的映射,影子。

0.5 着色器(shader)

承担着将顶点、变换、材质、光源、相机等相互作用生成最终图像的任务。

1 相关链接

2 依赖

  • numpy 任意最近版本
  • python-utils 1.6及以上版本

3 安装

pip install numpy-stl

4 初始使用

在安装完这个模块后,我们可以像使用pip命令一样,使用下面的这些命令。

$ stl2bin your_ascii_stl_file.stl new_binary_stl_file.stl
$ stl2ascii your_binary_stl_file.stl new_ascii_stl_file.stl
$ stl your_ascii_stl_file.stl new_binary_stl_file.stl

5 贡献

作者欢迎大家积极多做贡献,根据指引开始贡献。

6 快速开始

import numpy
from stl import mesh

# 读取一个本地已经存在的stl文件
your_mesh = mesh.Mesh.from_file('some_file.stl')

# 或者创建一个新的 mesh (确保引入的‘mesh’不被自定义的mesh重写覆盖):
VERTICE_COUNT = 100
data = numpy.zeros(VERTICE_COUNT, dtype=mesh.Mesh.dtype)
your_mesh = mesh.Mesh(data, remove_empty_areas=False)

# The mesh normals (自动计算)
your_mesh.normals
# mesh向量
your_mesh.v0, your_mesh.v1, your_mesh.v2
# Accessing individual points (concatenation of v0, v1 and v2 in triplets)
assert (your_mesh.points[0][0:3] == your_mesh.v0[0]).all()
assert (your_mesh.points[0][3:6] == your_mesh.v1[0]).all()
assert (your_mesh.points[0][6:9] == your_mesh.v2[0]).all()
assert (your_mesh.points[1][0:3] == your_mesh.v0[1]).all()

# 保存为stl文件
your_mesh.save('new_stl_file.stl')

7 使用 matplotlib 绘制同样简单

使用matplotlib辅助显示3D模型和我们对其的处理结果。如下图,加载了一个俺私人珍藏的一个狗头。
狗头

from stl import mesh
from mpl_toolkits import mplot3d
from matplotlib import pyplot

# 创建一个plot
figure = pyplot.figure()
axes = mplot3d.Axes3D(figure)

# 加载stl文件并将向量加载到 plot
your_mesh = mesh.Mesh.from_file('dog.stl')
axes.add_collection3d(mplot3d.art3d.Poly3DCollection(your_mesh.vectors))

# 自动缩放网格尺寸
scale = your_mesh.points.flatten()
axes.auto_scale_xyz(scale, scale, scale)

# 在屏幕上显示这个plot
pyplot.show()

8 修改网格对象

from stl import mesh
import math
import numpy

# Create 3 faces of a cube
data = numpy.zeros(6, dtype=mesh.Mesh.dtype)

# Top of the cube
data['vectors'][0] = numpy.array([[0, 1, 1],
                                  [1, 0, 1],
                                  [0, 0, 1]])
data['vectors'][1] = numpy.array([[1, 0, 1],
                                  [0, 1, 1],
                                  [1, 1, 1]])
# Front face
data['vectors'][2] = numpy.array([[1, 0, 0],
                                  [1, 0, 1],
                                  [1, 1, 0]])
data['vectors'][3] = numpy.array([[1, 1, 1],
                                  [1, 0, 1],
                                  [1, 1, 0]])
# Left face
data['vectors'][4] = numpy.array([[0, 0, 0],
                                  [1, 0, 0],
                                  [1, 0, 1]])
data['vectors'][5] = numpy.array([[0, 0, 0],
                                  [0, 0, 1],
                                  [1, 0, 1]])

# Since the cube faces are from 0 to 1 we can move it to the middle by
# substracting .5
data['vectors'] -= .5

# Generate 4 different meshes so we can rotate them later
meshes = [mesh.Mesh(data.copy()) for _ in range(4)]

# Rotate 90 degrees over the Y axis
meshes[0].rotate([0.0, 0.5, 0.0], math.radians(90))

# Translate 2 points over the X axis
meshes[1].x += 2

# Rotate 90 degrees over the X axis
meshes[2].rotate([0.5, 0.0, 0.0], math.radians(90))
# Translate 2 points over the X and Y points
meshes[2].x += 2
meshes[2].y += 2

# Rotate 90 degrees over the X and Y axis
meshes[3].rotate([0.5, 0.0, 0.0], math.radians(90))
meshes[3].rotate([0.0, 0.5, 0.0], math.radians(90))
# Translate 2 points over the Y axis
meshes[3].y += 2


# Optionally render the rotated cube faces
from matplotlib import pyplot
from mpl_toolkits import mplot3d

# Create a new plot
figure = pyplot.figure()
axes = mplot3d.Axes3D(figure)

# Render the cube faces
for m in meshes:
    axes.add_collection3d(mplot3d.art3d.Poly3DCollection(m.vectors))

# Auto scale to the mesh size
scale = numpy.concatenate([m.points for m in meshes]).flatten()
axes.auto_scale_xyz(scale, scale, scale)

# Show the plot to the screen
pyplot.show()

运行结果

9 继承扩展Mesh对象

运行效果

from stl import mesh
import math
import numpy

# 创建立方体的3个面
data = numpy.zeros(6, dtype=mesh.Mesh.dtype)

# 立方体顶部
data['vectors'][0] = numpy.array([[0, 1, 1],
                                  [1, 0, 1],
                                  [0, 0, 1]])
data['vectors'][1] = numpy.array([[1, 0, 1],
                                  [0, 1, 1],
                                  [1, 1, 1]])
# 前面
data['vectors'][2] = numpy.array([[1, 0, 0],
                                  [1, 0, 1],
                                  [1, 1, 0]])
data['vectors'][3] = numpy.array([[1, 1, 1],
                                  [1, 0, 1],
                                  [1, 1, 0]])
# 左面
data['vectors'][4] = numpy.array([[0, 0, 0],
                                  [1, 0, 0],
                                  [1, 0, 1]])
data['vectors'][5] = numpy.array([[0, 0, 0],
                                  [0, 0, 1],
                                  [1, 0, 1]])

# Since the cube faces are from 0 to 1 we can move it to the middle by
# substracting .5
data['vectors'] -= .5

cube_back = mesh.Mesh(data.copy())
cube_front = mesh.Mesh(data.copy())

# Rotate 90 degrees over the X axis followed by the Y axis followed by the
# X axis
cube_back.rotate([0.5, 0.0, 0.0], math.radians(90))
cube_back.rotate([0.0, 0.5, 0.0], math.radians(90))
cube_back.rotate([0.5, 0.0, 0.0], math.radians(90))

cube = mesh.Mesh(numpy.concatenate([
    cube_back.data.copy(),
    cube_front.data.copy(),
]))

# Optionally render the rotated cube faces
from matplotlib import pyplot
from mpl_toolkits import mplot3d

# 创建一个 plot
figure = pyplot.figure()
axes = mplot3d.Axes3D(figure)

# 提供立方体
axes.add_collection3d(mplot3d.art3d.Poly3DCollection(cube.vectors))

# 自动缩放尺寸
scale = cube_back.points.flatten()
axes.auto_scale_xyz(scale, scale, scale)

# 显示
pyplot.show()

10 用一个顶点和面的集合列表创建Mesh对象

运行效果

import numpy as np
from stl import mesh

# 定义立方体的8个顶点
vertices = np.array([\
    [-1, -1, -1],
    [+1, -1, -1],
    [+1, +1, -1],
    [-1, +1, -1],
    [-1, -1, +1],
    [+1, -1, +1],
    [+1, +1, +1],
    [-1, +1, +1]])
# 定义一个由12个三角面构成的立方体
faces = np.array([\
    [0,3,1],
    [1,3,2],
    [0,4,7],
    [0,7,3],
    [4,5,6],
    [4,6,7],
    [5,1,2],
    [5,2,6],
    [2,3,6],
    [3,7,6],
    [0,1,5],
    [0,5,4]])

# 创建mesh
cube = mesh.Mesh(np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))
for i, f in enumerate(faces):
    for j in range(3):
        cube.vectors[i][j] = vertices[f[j],:]

# 将mesh 写入文件"cube.stl"
cube.save('cube.stl')

11 获取mesh对象相关参数(体积、重心、惯量)

import numpy as np
from stl import mesh

# Using an existing closed stl file:
your_mesh = mesh.Mesh.from_file('some_file.stl')

volume, cog, inertia = your_mesh.get_mass_properties()
print("体积                                  = {0}".format(volume))
print("重心                            (COG) = {0}".format(cog))
print("Inertia matrix at expressed at the COG  = {0}".format(inertia[0,:]))
print("                                          {0}".format(inertia[1,:]))
print("                                          {0}".format(inertia[2,:]))

12 组合多个stl文件

import math
import stl
from stl import mesh
import numpy


# find the max dimensions, so we can know the bounding box, getting the height,
# width, length (because these are the step size)...
def find_mins_maxs(obj):
    minx = obj.x.min()
    maxx = obj.x.max()
    miny = obj.y.min()
    maxy = obj.y.max()
    minz = obj.z.min()
    maxz = obj.z.max()
    return minx, maxx, miny, maxy, minz, maxz


def translate(_solid, step, padding, multiplier, axis):
    if 'x' == axis:
        items = 0, 3, 6
    elif 'y' == axis:
        items = 1, 4, 7
    elif 'z' == axis:
        items = 2, 5, 8
    else:
        raise RuntimeError('Unknown axis %r, expected x, y or z' % axis)

    # _solid.points.shape == [:, ((x, y, z), (x, y, z), (x, y, z))]
    _solid.points[:, items] += (step * multiplier) + (padding * multiplier)


def copy_obj(obj, dims, num_rows, num_cols, num_layers):
    w, l, h = dims
    copies = []
    for layer in range(num_layers):
        for row in range(num_rows):
            for col in range(num_cols):
                # skip the position where original being copied is
                if row == 0 and col == 0 and layer == 0:
                    continue
                _copy = mesh.Mesh(obj.data.copy())
                # pad the space between objects by 10% of the dimension being
                # translated
                if col != 0:
                    translate(_copy, w, w / 10., col, 'x')
                if row != 0:
                    translate(_copy, l, l / 10., row, 'y')
                if layer != 0:
                    translate(_copy, h, h / 10., layer, 'z')
                copies.append(_copy)
    return copies

# Using an existing stl file:
main_body = mesh.Mesh.from_file('ball_and_socket_simplified_-_main_body.stl')

# rotate along Y
main_body.rotate([0.0, 0.5, 0.0], math.radians(90))

minx, maxx, miny, maxy, minz, maxz = find_mins_maxs(main_body)
w1 = maxx - minx
l1 = maxy - miny
h1 = maxz - minz
copies = copy_obj(main_body, (w1, l1, h1), 2, 2, 1)

# I wanted to add another related STL to the final STL
twist_lock = mesh.Mesh.from_file('ball_and_socket_simplified_-_twist_lock.stl')
minx, maxx, miny, maxy, minz, maxz = find_mins_maxs(twist_lock)
w2 = maxx - minx
l2 = maxy - miny
h2 = maxz - minz
translate(twist_lock, w1, w1 / 10., 3, 'x')
copies2 = copy_obj(twist_lock, (w2, l2, h2), 2, 2, 1)
combined = mesh.Mesh(numpy.concatenate([main_body.data, twist_lock.data] +
                                    [copy.data for copy in copies] +
                                    [copy.data for copy in copies2]))

combined.save('combined.stl', mode=stl.Mode.ASCII)  # save as ASCII

13 已知限制

  • 启用加速后,STL名会自动转为小写。

参考文献

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值