- 博客(182)
- 收藏
- 关注
原创 深度学习---退火策略
通过动态调整某些关键参数(如学习率、温度、探索率等),在优化过程中平衡全局搜索与局部开发能力,避免陷入局部最优,提升模型训练的稳定性和泛化能力。
2025-05-21 09:00:00
351
原创 深度学习---级联模型
并根据具体任务选择合适的级联模式(串行、并行或树状)。通过结合最新的深度学习技术(如预训练模型、知识蒸馏),级联模型可进一步突破性能瓶颈,应用于更广泛的领域。的思想,将复杂问题转化为多个简单子问题,显著提升模型性能和可解释性。,尤其适合需要高精度、多阶段处理的场景。在实际应用中,需重点关注。
2025-05-21 08:17:43
584
原创 USB转TTL
USB转TTL模块是实现计算机USB接口与TTL电平串口设备(如单片机、嵌入式系统)通信的核心组件,其原理涉及**协议转换**和**电平适配**两大关键技术
2025-05-21 00:00:00
926
原创 Pytorch---view()函数
PyTorch中的view函数用于重塑张量的形状,同时保持元素总数不变。其语法为tensor.view(*args),其中*args为新形状。view支持降维、升维操作,并允许使用-1自动推断维度。该函数要求张量内存连续,否则需先调用contiguous()。与reshape相比,view返回原张量的视图,不进行数据拷贝,性能更高,但要求张量连续;reshape则更灵活,自动处理非连续张量,但可能产生拷贝。view常用于深度学习模型中调整张量形状,如在全连接层和卷积层之间过渡时。使用时需确保新形状的元素总数
2025-05-20 00:00:00
867
原创 深度学习---模型预热(Model Warm-Up)
**模型预热**是指在机器学习模型正式训练或推理前,通过特定技术手段使模型参数、计算图或运行环境提前进入稳定状态的过程。其本质是通过**预处理操作降低初始阶段的不稳定性**,从而提升后续任务的效率、精度或性能。
2025-05-20 00:00:00
1030
原创 深度学习推理引擎---ONNX Runtime
ONNX Runtime是由微软开发的跨平台推理引擎,专为优化ONNX模型的推理性能设计。它支持多框架模型转换为ONNX后统一推理,并深度优化硬件加速,内置自动优化技术。ONNX Runtime兼容多种硬件(CPU/GPU/TPU/NPU等)和操作系统(Windows/Linux/macOS/嵌入式系统),支持多种编程语言(Python/C++/C#/Java等)
2025-05-19 00:00:00
1023
原创 计算机系统---TPU(张量处理单元)
**TPU(Tensor Processing Unit)** 是由**Google**开发的**专用AI加速芯片**,专为**深度学习中的张量运算(如矩阵乘法、卷积)**设计,属于**ASIC(专用集成电路)**范畴。
2025-05-19 00:00:00
678
1
原创 深度学习推理引擎---OpenVINO
OpenVINO是英特尔开发的开源工具套件,专注于优化和加速深度学习模型在英特尔硬件(如CPU、GPU、VPU、FPGA等)上的推理性能。其核心组件包括模型优化器和推理引擎,前者将训练模型转换为OpenVINO的中间表示格式,后者在目标硬件上执行优化后的模型。OpenVINO支持多种硬件设备,并通过量化、剪枝、层融合等技术提升模型效率。它还提供丰富的工具链,如模型下载器、性能测试工具和示例应用,支持多种深度学习框架(如TensorFlow、PyTorch、ONNX等)。
2025-05-18 00:00:00
1079
原创 深度学习---知识蒸馏(Knowledge Distillation, KD)
知识蒸馏是一种模型压缩与迁移技术,通过将复杂高性能的**教师模型(Teacher Model)**所学的“知识”迁移到轻量级的**学生模型(Student Model)**,使学生模型在参数量和计算成本大幅降低的同时,尽可能保留教师模型的性能。
2025-05-18 00:00:00
1228
原创 深度学习---训练循环(Training Loop)
训练循环是深度学习中模型训练的核心过程,通过迭代优化模型参数以最小化损失函数并提升泛化能力。其核心步骤包括数据加载与预处理、模型定义、损失计算、反向传播、参数更新等。数据加载涉及数据划分、批次处理和预处理;模型定义包括网络结构和前向传播;损失函数衡量预测与真实值的差异;优化器基于梯度更新参数;反向传播通过自动微分计算梯度。训练循环还包括学习率调度、验证与测试等环节,以监控模型性能并防止过拟合。高级技巧如梯度裁剪和混合精度训练可进一步提升训练效率和稳定性。理解训练循环的逻辑是优化模型性能的关键。
2025-05-17 08:00:00
768
原创 python魔术方法--- __name__ == “__main__“
if __name__=="main": 通过检查__name__变量的值来区分模块是作为主程序运行还是被其他模块导入。
2025-05-17 08:00:00
542
原创 深度学习推理引擎---TensorRT
TensorRT 是 NVIDIA 推出的高性能深度学习推理优化器与运行时库,专为 NVIDIA GPU 硬件深度优化,能够显著提升模型推理速度(最高达 6 倍)并降低延迟。它广泛应用于自动驾驶、智能视频分析、语音识别等对实时性要求高的场景。TensorRT 的核心架构包括模型解析、层融合、精度校准、张量重构和多流执行等优化流程,支持 TensorFlow、PyTorch 等框架的模型导入。
2025-05-16 10:57:31
766
原创 深度学习框架---Caffe
Caffe 是一个专为计算机视觉设计的深度学习框架,由伯克利AI实验室于2014年开发,基于BSD-2开源协议。其核心特点包括高效的速度(C++/CUDA实现)、易用性(通过Protobuf配置文件定义网络结构)以及活跃的社区支持。Caffe 在图像分类、目标检测和语义分割等任务中表现优异,并支持嵌入式设备和移动端部署。其架构由Net、Layer、Blob、Solver和Backend等核心组件构成,支持CPU和GPU计算。
2025-05-16 10:48:45
599
原创 深度学习框架---TensorFlow概览
TensorFlow 是一个功能强大的开源机器学习框架,支持从基础到高级的深度学习任务。其 2.x 版本默认启用动态图(Eager Execution),简化了开发流程,并集成了 Keras API,提供了高层接口以快速构建和训练模型。TensorFlow 的核心优势包括跨平台支持(CPU/GPU/TPU)、丰富的生态系统(如数据处理、模型部署、可视化工具)以及自动微分功能,极大地方便了深度学习模型的开发与优化。
2025-05-15 20:46:12
1562
原创 嵌入式---电平适配
电平适配技术是实现不同电压电平器件间信号正确传输的关键技术,广泛应用于数字系统中。其核心场景包括不同电压域器件互联、高速总线跨电压传输、开漏/开集电极输出电路适配以及带电气隔离的系统间信号传输。电平适配技术分为被动式和主动式两大类。被动式适配主要依赖无源器件,如电阻分压电路、上拉/下拉电阻和二极管钳位电路,适用于低速场景,但存在单向传输、驱动能力弱等局限。主动式适配则基于有源器件,包括专用电平转换芯片、微控制器IO口配置和总线收发器,支持高速、双向传输,适用于复杂系统。隔离型电平适配则通过光耦或磁耦实现电气
2025-05-14 08:00:00
837
原创 电控---协议转换
协议转换技术是实现不同通信协议、数据格式或交互规则的系统间互操作的核心技术,通过解析、重构、适配报文/指令,消除异构系统的“语言壁垒”,确保信息准确传递。其应用场景广泛,包括异构系统互联、新旧系统兼容、跨平台服务互通和多协议设备集成等。协议转换按OSI模型层次可分为物理层、数据链路层、网络层和传输层/应用层转换,每层转换涉及不同的技术核心和典型设备。关键技术包括协议解析与重构、协议适配层设计、状态管理、性能优化、安全性技术以及兼容性与容错处理。典型架构模式有集中式网关、分布式代理和端到端中间件,实现方式包括
2025-05-14 08:00:00
817
原创 计算机视觉---目标检测(Object Detecting)概览
目标检测是计算机视觉中的核心任务,旨在从图像或视频中定位并分类所有感兴趣的目标,输出边界框和类别标签。其发展经历了从传统方法到深度学习的演变。传统方法如HOG+SVM和DPM依赖手工特征,泛化能力有限。深度学习时代,两阶段检测器(如R-CNN系列)通过区域建议网络(RPN)和特征提取网络(如ResNet)显著提升了精度,但速度较慢。单阶段检测器(如YOLO和SSD)则通过直接预测边界框和类别,实现了更高的效率。近年来,无锚框检测器(如CenterNet和FCOS)和基于Transformer的检测器(如DE
2025-05-13 08:00:00
800
原创 计算机视觉---感受野(Receptive Field)
卷积神经网络(CNN)中的感受野是指特征图上某个神经元对应的原始输入图像的区域大小,决定了神经元整合信息的空间尺度。感受野的计算涉及卷积核大小、步长、填充和空洞率等参数。单层感受野的计算公式为 (RF = k),其中 (k) 为卷积核大小。多层感受野通过递推公式计算,考虑每层的卷积核和步长。实际感受野因卷积操作的权重分布和非线性激活而呈高斯分布,有效区域通常小于理论值。影响感受野的因素包括卷积核大小、步长、空洞率和网络深度。在网络设计中,浅层网络捕捉局部特征,深层网络整合全局上下文。高级技术如空洞卷积、可变
2025-05-13 08:00:00
1141
原创 计算机视觉---目标追踪(Object Tracking)概览
定义:在视频序列或连续图像中,对一个或多个感兴趣目标(如人、车辆、物体等)的位置、运动轨迹进行持续估计的过程。核心任务:跨帧关联目标,解决“同一目标在不同帧中的对应关系”。核心输入:视频序列(含帧图像、时间戳)、初始帧目标位置(单目标)或检测结果(多目标)。目标追踪是计算机视觉的核心任务,从单目标的精准定位到多目标的全局关联,技术路线涵盖传统算法到深度学习,应用场景渗透安防、交通、机器人等领域。
2025-05-12 16:45:36
1325
原创 C++匿名函数
C++ 的匿名函数(Lambda)提供了强大而灵活的语法,使代码更简洁、更易读。掌握捕获列表、参数、返回类型和各种特性(如泛型、捕获初始化)是使用 Lambda 的关键。合理使用 Lambda 可以显著提升 C++ 代码的表达力和效率。C++ 中的匿名函数(Lambda 表达式)是 C++11 引入的一项重要特性,它允许你在需要的地方定义一个临时的、无名的函数对象,使代码更加简洁和灵活。允许在捕获列表中初始化新变量,可移动构造对象或重命名捕获的变量。默认情况下,值捕获的变量在 lambda 内部是只读的。
2025-05-12 16:44:27
898
原创 深度学习---评价指标
深度学习评价指标体系需根据任务类型(分类/回归/生成)、数据特性(平衡/不平衡/长尾)、应用场景(医疗/推荐/安全)综合选择。核心是理解每个指标的数学定义、适用边界及业务含义,避免单一指标依赖,构建多维评估框架。实际应用中,常需结合领域知识设计定制化指标(如语音识别的WER,视频理解的mAP@N帧),并注意指标与优化目标的一致性(如优化MSE时R²可能非单调变化)。
2025-05-04 09:58:08
1225
原创 深度学习---模型推理
基本定义模型推理:指利用训练好的模型对输入数据进行处理,生成输出结果(如预测、决策、结论)的过程。核心目标:将模型的“知识”转化为具体场景的解决方案,实现自动化预测、分类、生成或逻辑推断。与训练的区别训练:通过数据优化模型参数(学习过程),侧重算法迭代和泛化能力;推理:使用固定参数的模型进行前向计算(应用过程),侧重效率、稳定性和输出质量。模型推理是连接模型训练与实际应用的关键环节,涉及从输入处理到输出优化的全流程技术,需平衡准确性、效率、鲁棒性和可解释性。
2025-04-29 10:41:20
1230
原创 深度学习---pytorch搭建深度学习模型(附带图片五分类实例)
数据增强:通过随机翻转、旋转提升模型泛化能力。模型结构:使用卷积层提取特征,全连接层进行分类。设备管理:自动检测GPU加速训练。训练技巧:Dropout防止过拟合,Adam优化器自适应学习率。模型保存:保存验证集上表现最好的模型。
2025-04-29 10:27:07
1011
原创 深度学习框架---Pytorch概览
开源深度学习框架:由 Facebook(Meta)AI 实验室开发,基于 Lua 语言的 Torch 框架重构,2017 年正式开源,主打动态计算图和易用性。核心优势:灵活的动态图机制、Python 优先的开发体验、强大的 GPU 加速支持、丰富的生态系统。定位:兼顾科研快速迭代(动态图灵活性)与工业部署(TorchScript、ONNX 支持),是学术界和工业界的主流框架之一。
2025-04-28 20:24:02
1162
原创 TI---UART通信
回调函数机制SysConfig 支持添加回调:在 UART 配置页“Callback”选项中定义接收完成回调(如),生成函数框架:void uartRxCallback(uint8_t data) {// 用户填充逻辑(如数据解析、命令响应)回调调用位置:在接收中断处理中调用回调(需用户手动添加,生成代码仅提供框架)。TI SysConfig 生成的 UART 代码覆盖了从基础配置到高级功能(DMA、低功耗、多中断处理)的全流程,只需聚焦业务逻辑(如数据解析、协议实现)。
2025-04-27 00:00:00
1485
原创 TI---sysconfig生成宏
SysConfig生成的宏定义是硬件配置的符号化映射免硬编码:避免手动写入硬件参数(如引脚号、波特率),减少语法错误和维护成本。配置可视化:通过宏名即可明确参数含义(如),提升代码可读性。跨平台适配:同一套代码通过不同SysConfig配置文件,适配不同硬件平台(如开发板A与开发板B的引脚差异)。自动依赖检查:工具在生成宏时校验配置合法性(如引脚复用冲突时报错),编译阶段暴露问题。1U// UART0外设是否启用(1=启用,0=禁用)1U// 硬件是否存在I2C1外设(用于多板卡兼容)1U。
2025-04-27 00:00:00
892
原创 Windows---注册表
注册表是 Windows 系统的“神经中枢”,掌握其结构和操作能深入理解系统运行机制,实现高级配置和故障修复。但由于其直接影响系统稳定性,需严格遵循“备份→谨慎修改→验证效果”的流程,避免因误操作导致系统崩溃。对于普通用户,建议仅在明确需求和指导下接触注册表;对于管理员和开发者,注册表是系统管理和软件调试的必备工具。
2025-04-26 10:34:35
652
原创 Windows---脚本(批处理,PowerShell,VBScript)
官方文档批处理命令参考PowerShell 文档中心学习路径掌握批处理基础命令与流程控制深入 PowerShell Cmdlet 与对象模型实践系统管理脚本(用户创建、服务监控、日志分析)
2025-04-26 10:26:39
883
原创 ROS2---时间戳对齐
ROS2的时间戳对齐是多传感器融合的核心技术,其实现涉及硬件同步、软件算法、通信协议和实时性配置等多个层面。通过硬件触发、PTP协议、库和动态校准算法的组合方案,可实现高精度的时间对齐。实际应用中,需根据场景需求选择合适的同步策略,并通过参数调优和在线校准进一步提升系统鲁棒性。忽视时间对齐可能导致定位失效、控制延迟甚至安全事故,而成熟的同步方案(如ROS2的时间同步工具链)能显著提升机器人系统的可靠性与性能。
2025-04-24 23:19:06
1298
原创 电控---JTAG协议
JTAG协议凭借其边界扫描测试、多芯片级联和调试功能,成为复杂电子系统测试的核心技术。其核心设计包括TAP状态机、指令寄存器分层访问和边界扫描单元,结合硬件级防护和协议扩展,满足多样化需求。在实际应用中,需结合硬件设计、协议配置及工具链优化,以充分发挥其性能。对于引脚受限或低功耗场景,SWD是更优选择;而复杂系统测试和多芯片协同调试,JTAG仍不可替代。未来,JTAG将进一步向高速化、安全化和多功能化发展,成为嵌入式测试领域的主流标准。
2025-04-24 23:17:02
1247
原创 电控---DMP库
DMP库是MPU6050等传感器发挥姿态解算能力的核心工具,其核心价值在于硬件加速与软件抽象的结合。校准流程:务必在设备初始化时执行传感器校准,确保零偏数据准确。数据输出选择:动态场景优先使用四元数(避免欧拉角万向节死锁),人机交互场景使用欧拉角(直观易读)。资源管理:合理配置DMP输出频率与FIFO大小,平衡MCU算力与功耗。文档依赖:不同厂商的库实现细节有差异(如Invensense官方库vs开源封装库),需严格参照目标库的API文档(如I2Cdev库的在线手册)。
2025-04-23 21:45:43
1013
原创 IMU---MPU6050
1. 基本定位型号:MPU6050,InvenSense(现TDK)推出的全球首款6轴MEMS运动传感器,集成3轴加速度计、3轴陀螺仪,内置温度传感器(非6轴核心功能)。定位:低成本、低功耗、高精度,广泛应用于消费电子(手机、无人机)、工业控制、穿戴设备等。2. 核心特性六轴融合:加速度计(±2g/±4g/±8g/±16g量程)+ 陀螺仪(±250/±500/±1000/±2000°/s量程)。接口:I2C(主从模式,默认地址0x68/0x69)和SPI(仅4线模式,最高10MHz)。功耗。
2025-04-23 21:41:07
1058
原创 嵌入式---HC-SR04超声波传感器
HC-SR04是一款低成本、高精度的超声波测距模块,广泛应用于机器人避障、无人机导航、智能设备距离检测等场景。其核心原理是通过发射超声波并接收反射回波,计算信号往返时间来确定目标物体的距离。4个引脚:VCC、TRIG(触发)、ECHO(回声)、GND。超声波探头:左侧为发射探头(TX),右侧为接收探头(RX),中间可能有状态指示灯(部分版本)。HC-SR04是入门级超声波测距的首选,其核心在于理解“触发-接收”机制和时间-距离换算。
2025-04-23 07:00:00
1513
原创 嵌入式---超声波测距模块
超声波测距是低成本、易实现的非接触测量方案,核心在于精准测量时间差并补偿环境因素。通过合理的硬件设计(如滤波、聚焦)和软件优化(如温度补偿、噪声处理),可满足大多数中短距离测量需求。在复杂场景中,需结合多传感器融合(如视觉、红外)进一步提升可靠性。
2025-04-22 22:15:44
1017
原创 电控---SWD协议
SWD协议凭借其引脚少、速度快、低功耗等优势,已成为ARM架构微控制器调试的首选方案。其核心设计包括差分编码、半双工通信、寄存器分层访问等,结合实时跟踪、安全加密和低功耗优化,满足嵌入式开发的多样化需求。在实际应用中,需结合硬件设计、协议配置及工具链优化,以充分发挥其性能。对于复杂系统或需要边界扫描测试的场景,JTAG仍是更合适的选择。未来,SWD将进一步向高速化、安全化和多功能化发展,成为嵌入式调试领域的主流标准。
2025-04-22 00:00:00
1210
【CMake构建系统】基于CMake的项目构建与管理:宏定义、嵌套CMakeLists及流程控制详细介绍了文档的主要内容
2025-04-03
### 【CMake项目构建工具】CMake保姆级教程:跨平台项目自动化构建与管理
2025-04-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人