描述:
给你 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2。

示例:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解决思路:
用暴力的方式遍历的情况,时间复杂度会达到O(n^2),如何降低时间复杂度到O(n)?
通过双指针的方式,一个指针指向列表左端,一个指针指向右端,通过调整两个指针以达到最大值,那么如何移动呢?每次移动较小数值的那个指针。
class Solution(object):
def maxArea(self, height):
"""
:type height: List[int]
:rtype: int
"""
left = 0
right = len(height) - 1
maxArea = 0
while left < right:
if height[left] > height[right]:
h = height[right]
right -= 1
else:
h = height[left]
left += 1
maxArea = max(maxArea, (right - left + 1)* h)
return maxArea

本文介绍了一种使用双指针优化的方法来解决寻找两条垂直线以最大化容器容积的问题。在给定非负整数数组表示高度的情况下,通过左右两个指针分别从数组两端开始,每次移动高度较短的那一侧指针,更新最大面积。最终时间复杂度降低到O(n)。示例中,给定数组为[1,8,6,2,5,4,8,3,7],最大面积为49。
447

被折叠的 条评论
为什么被折叠?



