经典论文
文章平均质量分 90
西南小游侠
这个作者很懒,什么都没留下…
展开
-
BERT 论文阅读
本文主要阅读并总结了论文《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》,分析了 BERT 的基本原理与架构,同时基于之前解读的一些自然语言处理经典论文,简要分析了 BERT 的思想沿承与开创性意义。原创 2023-02-12 20:34:14 · 397 阅读 · 0 评论 -
《Attention Is All You Need》(Transformer)论文阅读
2017年,Vaswani 等人在 NLP 领域顶级会议上发表了论文《Attention Is All You Need》,提出了 NLP 历史上里程碑的模型——Transformer。Transformer 创造性地抛弃了经典的 CNN、RNN 结构,仅使用 attention 机制和全连接网络搭建,在序列到序列(Seq2Seq)任务上取得了良好效果。自 Transformer 始,attention 机制取代了 RNN 的主流地位。本文阅读并总结了该经典论文,并详细介绍了 Transformer 的原理原创 2023-01-27 20:34:44 · 653 阅读 · 0 评论 -
ELMo论文阅读
本文详细阅读了ELMO论文,并对该模型的特点、模型架构和思路进行了分析,包括其BiLSTM结构特点、模型优势、模型意义以及其背后的重要思想等。原创 2023-01-14 14:24:51 · 241 阅读 · 1 评论 -
Word2Vec原论文阅读
Word2Vec 是自然语言处理、文本表示学习的典型模型,首次提出了 CBOW、Skip-gram 等目前仍在沿用的词向量学习思想。本文主要阅读并总结了 Word2Vec 原始论文《Efficient Estimation of Word Representations in Vector Space》,对该论文及其提出的 Word2Vec 模型基本原理、复杂度计算、多维语义相似度测试标准进行了一个大致介绍。原创 2022-11-26 21:38:17 · 2091 阅读 · 1 评论