拉格朗日插值和牛顿插值原理及使用(代码环境:matlab)

本文通过MATLAB探讨了拉格朗日插值和牛顿插值方法。在拉格朗日插值中,分别利用直线、抛物线和三次曲线对1980年世界人口进行估算。而在牛顿插值部分,文章应用线性和9次多项式插值来估计2010年的石油产量,以此展示高次插值的局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目一:

1.用表1-1中的世界人口统计数值估计1980年的人口
表 1-1:

人口
1960 3 039 585 530
1970 3 707 475 887
1990 5 281 653 820
2000 6 079 603 571

要求采用Lagrange插值:
(a) 采用经过1970和1990年估计值的直线;
(b) 经过1960年、1970年以及1990年估计值的抛物线;
© 经过全部4个数据点的三次曲线。

拉格朗日插值:

1.原理在这里插入图片描述
图1 Lagrange插值法计算的程序框图:
在这里插入图片描述
2.matlab代码:
要求采用Lagrange插值:

function p = LagrangePoly(xi,yi)
    syms t;
    p = 0;
    n = length(xi);
    for i = 1:n
        v = 1;
     
拉格朗日插值牛顿插值都是常用的函数逼近方法,下面我分别介绍如何使用matlab实现这两种插值方法。 1. 拉格朗日插值 拉格朗日插值的基本思想是将函数在给定的节点处展开成一个多项式,在区间内使用这个多项式来逼近原函数。具体实现过程如下: (1)首先定义节点,一般来说节点是在等距分布的情况下使用最为方便,所以我们可以使用 linspace 函数来生成等距节点。 (2)接着,根据节点函数值,定义插值多项式。拉格朗日插值多项式的表达式为: $$ L_n(x) = \sum_{i=0}^n y_i \prod_{j \neq i} \frac{x-x_j}{x_i-x_j} $$ 其中,$n$ 表示节点的数量,$x_i$ $y_i$ 分别表示第 $i$ 个节点的横坐标纵坐标,$x$ 表示要求解的点的横坐标。 (3)最后,使用插值多项式来求解需要的函数值。 下面是使用 matlab 实现拉格朗日插值的示例代码: ```matlab % 定义节点 x = linspace(-1, 1, 5); y = 1./(1+25*x.^2); % 定义插值多项式 syms t; L = 0; for i=1:length(x) Li = y(i); for j=1:length(x) if j~=i Li = Li*(t-x(j))/(x(i)-x(j)); end end L = L + Li; end % 求解函数值 f = @(t) 1./(1+25*t.^2); t = linspace(-1,1,100); yL = subs(L, t); yf = f(t); % 绘制图像 figure; plot(t, yL, 'r-', t, yf, 'b--'); legend('插值多项式', '原函数'); ``` 2. 牛顿插值 牛顿插值拉格朗日插值的一种改进,也是通过多项式来逼近原函数。具体实现过程如下: (1)同样是先定义节点,使用 linspace 函数生成等距节点。 (2)接着,使用差商的概念来定义插值多项式。插值多项式的表达式为: $$ N_n(x) = f[x_0] + \sum_{i=1}^n f[x_0, x_1, \cdots, x_i] \prod_{j=0}^{i-1} (x-x_j) $$ 其中,$f[x_0]$ 表示 $f(x_0)$,$f[x_0, x_1, \cdots, x_i]$ 表示 $f$ 在节点 $x_0, x_1, \cdots, x_i$ 处的差商,$x$ 表示要求解的点的横坐标。 (3)最后,使用插值多项式来求解需要的函数值。 下面是使用 matlab 实现牛顿插值的示例代码: ```matlab % 定义节点 x = linspace(-1, 1, 5); y = 1./(1+25*x.^2); % 计算差商 n = length(x)-1; f = zeros(n+1, n+1); f(:, 1) = y'; for i=2:n+1 for j=i:n+1 f(j, i) = (f(j, i-1)-f(j-1, i-1))/(x(j)-x(j-i+1)); end end % 计算插值多项式 syms t; N = f(1, 1); for i=2:n+1 term = 1; for j=1:i-1 term = term*(t-x(j)); end N = N + f(i, i)*term; end % 求解函数值 f = @(t) 1./(1+25*t.^2); t = linspace(-1,1,100); yN = subs(N, t); yf = f(t); % 绘制图像 figure; plot(t, yN, 'r-', t, yf, 'b--'); legend('插值多项式', '原函数'); ``` 需要注意的是,拉格朗日插值牛顿插值都是函数逼近方法,它们的精度取决于节点的数量分布,节点越密集,精度越高。因此,在实际应用中,需要根据具体问题来选择合适的插值方法节点分布。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值