Conda create 新环境报错:Solving environment: failed

# vep
# 使用vep对manta结果进行注释
# manta结果是染色体结构变异(SV),这里使用vep进行注释
# vep官方说明文档:
# http://asia.ensembl.org/info/docs/tools/vep/script/vep_tutorial.html
 
# 安装
conda create -n VEP
conda activate VEP
conda install -c bioconda ensembl-vep
# 报错:
# Elapsed: 
# An HTTP error occurred when trying to retrieve this URL.
# HTTP errors are often intermittent, and a simple retry will get you on your way.
# 查询发现是清华镜像的问题,怒换中科大镜像
# 尝试:显示现在的镜像:
conda config --show
  - https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/linux-64
  - https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
# 删除清华镜像,只留下中科大的:
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
# 再次安装,继续报错
conda install -c bioconda ensembl-vep
# Collecting package metadata (current_repodata.json): done
# Solving environment: failed with initial frozen solve. Retrying with flexible solve.
# Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.
# Collecting package metadata (repodata.json): done
# Solving environment: failed with initial frozen solve. Retrying with flexible solve.
# Solving environment: -
# Found conflicts! Looking for incompatible packages.                                                                                                                                                                                        failed
# UnsatisfiableError:
# 更新conda
conda update -n base conda
conda update -all
# 修改频道 
conda config --add channels conda-forge
conda config --set channel_priority flexible
# 安装成功!
### 解析 Conda 环境解析失败的原因 当遇到 `Solving environment: failed` 错误时,这通常意味着 conda 在尝试解决依赖关系时遇到了困难。可能原因包括网络连接问题、缓存数据损坏或是特定版本的软件包无法兼容。 ### 清除缓存并重试安装命令 清除本地缓存可以有效减少由于旧版元数据引起的冲突: ```bash conda clean --all ``` 之后再次运行原始的安装指令来查看是否解决了该问题[^1]。 ### 更新 Conda 到最新版本 有时较低版本的 conda 可能存在一些 bug 或者对于某些功能支持不足,因此建议先更新到最新的稳定版本再继续操作: ```bash conda update -n base conda ``` 完成上述步骤后再执行原计划中的环境配置或包管理任务[^2]。 ### 使用 `-c` 参数指定渠道源 如果默认镜像站速度较慢或者不稳定,则可以通过添加额外参数改变下载地址为国内常用站点如 Tsinghua University 镜像服务: ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/ conda config --set show_channel_urls yes ``` 这样做的好处是可以显著提高获取资源的速度以及成功率[^3]。 ### 调整求解器策略以加快处理进度 为了防止长时间等待而无果,在创建新环境之前可设置更宽松的时间限制和算法选项: ```bash export CONDA Solver=libmamba # 更换更快捷高效的库作为内部计算引擎 conda create --name myenv python=3.8 # 创建名为myenv的新环境并预设Python解释器版本号 ``` 通过这些措施往往能够有效地改善此类状况的发生频率及其影响程度[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值