自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(39)
  • 收藏
  • 关注

原创 第一章 递推算法

标第一章 递推算法解题方法:在已知条件和所求问题之间总存在着某种相互联系的关系,关键是前后过程之间的数量关系(即递推式),然后进行顺推或逆推。1.求斐波那契数列的前n项和Fibonacci 数列:0,1,1,2,3,5,8,13,21,34,…… f0= 0 f1= 1 fn= fn-1 + fn-2 ( n>= 2 ) 关键代码int n, i, a0...

2019-09-23 19:24:54 364

原创 错误:Resource punkt not found. Please use the NLTK Downloader to obtain the resource:

从https://www.nltk.org/data.html下载punkt包。放到下面任意一个目录中。

2023-12-07 19:09:21 931

原创 pip安装包报错:WARNING: Running pip as the ‘root‘ user can result in broken permissions and conflicting be

1 pip安装包时报错。

2023-06-16 17:52:51 7959 1

原创 AuToDL创建新环境(一)

【代码】AuToDL创建新环境(一)

2023-06-16 16:38:40 808

原创 IMPORTANT: You may need to close and restart your shell after running ‘conda init‘.

【代码】IMPORTANT: You may need to close and restart your shell after running ‘conda init‘.

2023-06-16 15:48:51 278 2

原创 torch +cuda常见问题

1 torch + cuda用cuda的torch,最好不要直接conda 或者pip去安装,否则用gpu去训练、测试模型容易出问题。建议直接去torch官网找https://pytorch.org/get-started/previous-versions/如果使用上面的命令安装后,报错(Could not find a version that satisfies…)。可能是cuda + torch的版本windows还没有,可以去官网看看cuda + torch版本对windows的适用情况,

2023-06-15 21:57:21 195

原创 pycharm专业版安装

1 去官网下载安装包https://www.jetbrains.com/pycharm/download/2 安装点击exe文件安装,自定义安装路径,尽量别装在c盘安装中把选项勾上点Install完事3 激活专业版学生账号可以免费用,使用学校给的邮箱去官网注册一下即可注册完直接登录账号就可有1年免费使用权

2023-06-15 21:45:50 53

原创 pycharm使用Anaconda创建好的环境

step1:创建项目后,选择previously configured interpreter->AddInterpreterstep2:找到Anaconda3\envs\文件夹下创建的环境,选择python.exe即可

2023-06-15 20:25:34 122

原创 Conda、pip下载包:PackagesNotFoundError: The following packages are not available from current channels:

1 问题安装包的时报下面错误(安装包之前查一下当前环境对应的包的版本:conda search 包名)2 解决方法报错原因是当前镜像中不存在这个包,解决方法如下:直接去官网https://anaconda.org/搜包名,找到对应的版本点进入,复制命令即可

2023-06-15 17:40:03 969

原创 anaconda创建新的python环境

【代码】anaconda创建新的python环境。

2023-06-15 16:50:25 1295

原创 Anaconda创建环境时FileNotFoundError|Executing transaction: failed

【代码】Anaconda创建环境时FileNotFoundError|Executing transaction: failed。

2023-06-15 15:48:31 948 1

原创 Anaconda报错solving environment:failed

【代码】Anaconda报错solving environment:failed。

2023-06-15 11:45:37 4850 1

原创 分享一个启动anaconda神速的方法

开着网启动一直转圈…把网关了启动,真是飞速,神速!!!!

2023-06-13 21:58:21 366

原创 布隆过滤器代码(SpringBoot+Redis+mybatis)

1 布隆过滤器如何解决缓存穿透把数据的key在布隆过滤器中记录,相当于在redis前挡一个布隆顾虑器。当有新请求时,先去过滤器中查询是否存在,如果不存在直接返回(减少无数据情况下,命令直接打到mysql数据库的压力);如果存在,再去查询缓存redis,如果redis里没有查到再去查询mysql。2 整体架构3-1 setBit构建代码计算key的hash值,对数据长度取模,计算在bitmap数组中位置,把相应位置置13-2 getBit构建代码计算key的hash值,对数据长度取模

2023-05-27 09:48:09 201

原创 BigDecimal为何能解决浮点数运算时精度丢失问题(底层)

1 为什么浮点数运算有精度丢失风险原因:计算机在存储浮点数时,指数和尾数能占用的bit位是固定的,十进制小数在转二进制小数时乘2取整,直到不存在小数为止,如果在运算时超过尾数限制的bit位长度,就会被截断,所以就导致小数精度发生损失解决方法:定义一个误差范围;或使用decimal2 底层原理十进制整数在转化为二进制数时不会有精度问题,所以将十进制小数扩大N被让它在整数维度上进行计算(BigInteger类型),并记录小数点位置即可;BigDecimal进行运算时分解为两部分,BigInteg

2023-05-07 22:21:35 1771

原创 自动装箱拆箱+包装类的缓存机制(底层代码)

【代码】自动装箱拆箱+包装类的缓存机制(底层代码)

2023-05-07 20:13:56 190

原创 Java对象逃逸及逃逸分析

同步省略:如果通过逃逸分析发现,同步代码块所使用的锁对象,只能够被一个线程访问而没有被发布到其他线程,那么JIT编译器在编译这个同步代码块的时候,会取消对这部分代码的同步(锁消除),极大提高并发性和性能。栈上分配:将堆分配转为栈分配,线程结束后,栈空间被回收,对象也会被回收,无须进行垃圾回收了。标量替换:对象拆分成标量,存储在栈中。

2023-05-07 16:39:20 361

原创 0.1 Redis安装

【代码】0.1 Redis安装。

2023-05-06 20:15:19 96

原创 Eclpise项目如何导入外部jar包

项目名上右击,依次选择【Build Path】–>【Configure Build Path…】,在打开的窗口中,先选中【Libraries】页,再从右边的按钮中点击 【add JARs…在打开的窗口中,我们依次展开本项目的项目和lib文件夹,然后选中我们刚才复制到项目中的jar包,然后点击【Apply】使刚才的操作生效,最后点击【OK】关闭窗口。注:原文链接:https://blog.csdn.net/qq_36853469/article/details/89520178。

2023-04-09 15:00:29 421

原创 dbeaver问题:Public Key Retrieval is not allowed

连接数据库时出现错误(Public Key Retrieval is not allowed)编辑连接信息–设置驱动属性为true–刷新一下。

2023-04-02 09:51:40 124

原创 1-2 MySQL下载、安装、配置

可以安装多个版本的MySQL,只要每个服务的端口号(port)设置不同即可,这样就可以根据端口号去打开不同的MySQL。配置好环境变量之后才能在任意目录下,识别出SQL指令。要不然SQL指令只能在bin目录下使用。配置好之后,新开CMD,mysql --version即可识别指令。把软件安装的bin目录配置到环境变量中。

2023-04-01 15:11:33 74

原创 1-1 MySQL的卸载

MySQL

2023-04-01 14:54:03 104

原创 Detecting Communities from Heterogeneous Graphs:A Context Path-based Graph Neural Network Model

1.异构图如何学习节点的嵌入传统方法基于meta-path学习节点的嵌入,捕获高阶关系缺点:定义有意义的meta-path需要专业知识本文方法基于context path捕获节点之间的高阶关系,构造基于context path的图神经网络(CP-GNN)2.预备知识异构图进行社区检测的两个主要方法1)一个社区内只包括一种类型的节点 (本文的方法)2)一个社区内包含多种类型的节点List item...............

2022-06-01 17:13:45 658 4

转载 MetaPath2vec:异质图Graph Embedding

论文:metapath2vec: Scalable Representation Learning for Heterogeneous Networks期刊:KDD 20171.Introduction传统方法中,一般将网络转化成邻接矩阵,然后使用机器学习来挖掘网络中的信息,学习嵌入,但是邻接矩阵通常很稀疏。对于复杂网络的表示学习,一些基于神经网络的模型也有非常好的效果,例如(DeepWalk,node2vec,以及LINE)但上述算法仅适合包含一类节点和边的同构网络,不能很好的用于包含多种顶点类型

2022-05-31 11:13:10 483

原创 生成对抗网络(GAN)在图网络中的应用

1.背景知识网络表征学习(Graph Representation Learning、 Network Embedding、 Graph Embedding):将图中的每一个节点映射到低维的向量空间,以便进行下游任务(例如节点分类,链路预测等)图表征学习的研究从很早就开始了,从最简单的邻接矩阵表示,到后面对邻接矩阵进行矩阵分解(SVD),再到基于随机游走的方法(DeepWalk、Node2Vec)以及Graph Neural Network和基于注意力机制的Graph Attention Networ

2022-05-16 17:25:00 1014

原创 Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning

1.基本概念self-supervised数据不用打标签,从数据本身寻找监督信号,原先损失函数定义为预测值和标签的交叉熵(学习的目标是使预测值和真实值尽可能接近),现在定义损失不用数据标签,而是从数据本身的监督信息出发(学习的目标是)contrastive learning一种典型的自监督学习方法,从数据中提取正样本和负样本,学习的目标是最大化与正样本的相似性,最小化与负样本的相似性self-supervised 和 supervised的区别监督式的训练数据需要有lable,学习的目标是使模

2022-05-13 16:44:29 1949

原创 Multi-attributed Community Search in Road-social Networks

1.问题定义(Multi-attributed CS)找到的社区结构与查询用户高度相关,并且所得社区结构在当前属性中得分最高(还是传统的两步,先根据查询节点找社区,再根据属性筛选)2.研究背景(location-based social networks (LBSN) )网络中不仅有用户和朋友关系,每个用户节点还和不同的属性相关联,例如位置信息,数字属性等Multi-attributed Road-social Networks定义??每个节点有位置信息以及几个数值属性3.Top-j

2022-05-03 21:57:42 213

原创 A survey of community search over big graphs

1.社区搜索的一些具体应用推荐蛋白质预测图深度学习书中的应用2.常见的定义社区的标准k-clique:子图中有K个点,且每个点都与其余节点有边相连k-truss:每条边至少与其余边形成K-2个三角形(每条边上的两个顶点,至少有k-2个公共邻居)truss number:包含边e的k-truss子图中,最大的Kk-ECC:移除任意k-1条边之后子图仍是连通的(每个顶点至少有K个邻居)k-core:每个节点的度至少为K( largest subgraph ),选出的子图可能不是连通的c

2022-04-29 20:48:03 492

原创 Query Driven-GNN for Community Search:From Non-Attributed,Attributed,to Interactive Attribute

1.问题定义CS(Community search)寻找包含查询节点的社区结构,使其内部结构紧密ACS(Attributed community search)寻找包含查询节点的紧密结构,且社区内成员的属性和查询属性相似2.传统方法缺点CS根据预定义的子图(k-core,k-truss…)寻找包含查询节点的社区,限制性太强,现实世界中很多社区不能满足这种结构ACS将问题分解两步执行(two-stage process),忽略了社区结构和节点属性之间的关系,以及属性和属性之间的关

2022-04-21 21:36:00 1752 2

原创 机器学习为什么归一化(normalization)

1.什么是归一化将数据的数值规约到(0,1)或者是(-1,1)区间,让各维度数据分布接近,避免模型参数被分布范围较大或者较小的数据支配。2.为什么归一化机器学习的目标就是不断优化损失函数,使其值最小,未归一化时,使用梯度下降时,梯度方向会偏离最小值方向,使梯度更新总很多弯路,归一化之后,损失函数曲线变得比较圆,有利于梯度下降。加快梯度下降,损失函数收敛;—速度上提升模型精度–也就是分类准确率.(消除不同量纲,便于综合指标评价,提高分类准确率)—质量上防止梯度爆炸(消除因为数据输入差距(1和2

2022-04-20 10:12:29 2528

原创 ICS-GNN:Lightweight Interactive Community Search via Graph Neural Network

1.问题定义给定一个查询节点,求出此节点所属的社区。社区搜索用途(可以为许多应用提供候选集:friend recommendations,fraudulent graph discover)2.现存方法缺点1)先爬取大部分的网络数据,然后从中寻找社区,但是爬取的数据很大一部分对终端用户没用。并且不能实时爬取数据,将数据爬取和社区搜索分开。2)使用人工定义的规则评价社区好坏,社区结构是灵活的,不能有效的评估3)根据预定义的规则(k-core,k-truss)在真实的数据中很难发现高质量的社区

2022-04-16 16:42:42 1211

原创 属性图社区搜索--QD-GCN(Query-Driven Graph Convolutional Networks for Attributed Community Search)

1.什么是ACS(attributed community search)对于给定的查询节点 (节点+该节点的属性),找出其所属社区2.ACS–传统方法传统方法传统方法分两步执行1)structural matching:找出查询节点的候选社区结构2)attribute filtering:优化属性函数,来缩小或筛选第一步选出的社区缺点1)将结构和属性分开处理,忽略结构和属性关联,现实世界的社区结构和属性是有关系的2)传统社区搜索基于预定义的子图(先根据如下标准:k-core,k-

2022-04-12 22:36:20 1447

原创 GNN从入门到找门--图神经网络

1.GCN转换过程将矩阵通过傅里叶变换转换成谱域,通过逆傅里叶变换转换成空域,得到GCN网络,大部分图神经网络使用空域。从空域角度理解GCN一个不断提取图特征的过程,(邻接矩阵A+单位矩阵)和特征矩阵相乘的物理意义:聚合此节点周围所有邻居的特征,以及自己本身的特征,然后左右乘度矩阵(原度矩阵基础上+1)进行归一化。GCN网络只改变每个节点的维度,不改变图的结构。将最终一层维度等于类别数,输出结果进行softmax,既得到每个节点属于某个标签的概率,可进行分类。或者把GCN当作特征提取器,将最

2022-04-11 19:47:36 773

原创 GNN从入门到精通--复杂图的embedding (3)

1.异质图嵌入异质图异质图存在不同类型的节点(节点关联的特征类型不相同),旨在将不同类型的节点映射到一个公共嵌入空间。不同类型的节点可能有不同形式(文本、图像…)和维度的节点特征,每种节点类型采用不同的深度模型,将相应特征映射到公共嵌入空间。例如,与节点关联的特征是图像时,CNN可以被用作映射函数。学习的目标是保留节点之间成对的连接信息,所以提取器提取出相连节点的信息(邻接矩阵),重构器根据嵌入域的表示来恢复邻接矩阵A。图注:某一节点对 i 和 j 在重构的邻接矩阵中值为1和0的概率(节点对相连的概

2022-04-11 16:06:32 1368

原创 GNN从入门到精通 -- Graph Embedding (2)

1.什么是图嵌入将图中的每个节点映射为一个低维的向量表示,映射后的向量应尽可能多的保留原图中节点的关键信息,以便更好地进行下游任务。2.哪些信息需要被保留?不同的图嵌入算法信息保留的侧重点也不一样,根据不同的下游任务,原图中需要保留的信息重要性程度也不一样(例如节点的邻域信息,结构角色,社区信息等)。3.如何保留关键信息?大多数技术共同思想就是,利用嵌入域中的节点表示,重构出要保留的图域信息(因为良好的节点表示应该能够重构出希望保留的关键信息),所以整个节点嵌入的学习过程就是,最小化重构

2022-04-08 21:39:07 1283

原创 GNN从入门到精通--Graph基本介绍(1)

1 连通图,连通分量对于一个无向图,如果任意节点i能通过一些边到达节点j,则称为连通图。无向图G的一个极大连通子图称为G的一个连通分量。连通图只有一个连通分量;非连通的无向图有多个连通分量。2 有向图的连通性强连通图:有向图中任意一对节点可达弱连通图:至少有一对节点不满足单向连通,但去掉边的方向后,节点之间可达3 最短路径,图直径最短路径:图中两节点之间路径中最短的图直径:图中任意所有节点最短路径的最大值4 度中心性(节点的度)/ (n-1) n为图中节点总数

2022-04-07 09:37:16 653

原创 第四章 动态规划

基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。1.矩阵连乘问题已知:给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,计算:这n个矩阵的连乘积A1A2…An所需要的乘法运算的次数最小值。分析:将矩阵连乘积AiAi+1…Aj简记为A[i:j], 这里i≤j;考察计算A[1:n]的最优计算次序。设这个计算次序在矩阵Ak和Ak+...

2019-10-07 17:21:11 262

原创 STL简介

1.容器类是容纳、包含一组元素或元素集合的对象;向量(vector) 双端队列(deque) 列表(list) 集合(set)、多重集合(multiset) 映射(map)和多重映射(multimap)容器分类a序列式容器每个元素都有固定位置--取决于插入时机和地点,和元素值无关,vector、deque、list;b关联式容器元素位置取决于特定的排序准则,和插入顺序无关set...

2019-10-07 11:34:50 164

原创 第三章 递归与分治策略

第三章 递归与分治策略直接或间接地调用自身的算法称为递归算法。用函数自身给出定义的函数称为递归函数。边界条件与递归方程是递归函数的二个要素,递归函数只有具备了这两个要素,才能在有限次计算后得出结果。递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。注意:在使用递增归策略时,必须有一个明确的递归结束条件,称为递归出口,否则将无限进行下去...

2019-09-23 21:35:30 268

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除