MATLAB代码:基于两阶段鲁棒优化算法的微网容量配置及优化调度
关键词:微网 优化调度 容量配置 两阶段鲁棒
仿真平台:MATLAB YALMIP+CPLEX
主要内容:代码主要做的是一个微网在四种典型日场景下各电源容量优化配置以及微网的联合优化调度问题,微网的聚合单元包括风电、光伏、燃气轮机以及储能等单元,程序考虑了不确定性,采用两阶段鲁棒优化方法进行优化,一阶段主要决策储能、风电、光伏以及燃气轮机等单元的配置容量,二阶段主要优化微网优化调度策略,求解各微网的实际调度策略,最后结果不仅给出了微网电源容量配置的结果,还给出了各个机组的出力等,效果非常好,具体可看图
MATLAB代码:基于两阶段鲁棒优化算法的微网容量配置及优化调度
摘要:微网作为分布式能源系统的重要组成部分,其容量配置和优化调度是关键技术问题。本文基于两阶段鲁棒优化算法,设计了一个能够在不同日场景下进行微网容量配置和优化调度的MATLAB程序。该程序综合考虑了微网聚合单元中的风电、光伏、燃气轮机和储能等能源单元的不确定性,通过一阶段和二阶段优化决策,得出最优的容量配置和优化调度策略。经过仿真验证,该程序的结果非常好,能够满足微网的实际需求。
关键词:微网;优化调度;容量配置;两阶段鲁棒;仿真平台;MATLAB;YALMIP+CPLEX
-
引言 随着能源危机的加剧和对可再生能源的追求,微网作为一种分布式能源系统的重要形式出现并得到广泛关注。微网能够将不同的能源单元(如风电、光伏、燃气轮机和储能等)进行协同运行,实现电力的供需平衡和优化调度。微网的容量配置和优化调度是实现微网高效运行的关键技术问题。
-
微网容量配置及优化调度问题描述 本文考虑了微网在四种典型日场景下的容量配置和优化调度问题。具体而言,微网的聚合单元包括风电、光伏、燃气轮机和储能等能源单元。由于这些能源单元的出力具有不确定性,我们采用两阶段鲁棒优化算法来优化微网的容量配置和调度策略。
在一阶段的优化决策中,我们主要考虑了储能、风电、光伏和燃气轮机等单元的容量配置问题。通过建立鲁棒优化模型,我们能够在不确定出力条件下,为微网选择合适的容量配置,以满足不同日场景下的电力需求,同时降低微网的运行成本和风险。
在二阶段的优化决策中,我们主要优化微网的优化调度策略。通过求解微网的实际调度策略,我们能够使微网在不同的日场景下实现电力供需的平衡,并确保系统的稳定性和可靠性。为了保证求解效率,我们采用MATLAB的YALMIP工具包和CPLEX求解器进行仿真实验。
- 仿真实验及结果分析 我们使用MATLAB的YALMIP工具包和CPLEX求解器进行仿真实验。通过输入不同的日场景数据和微网参数,我们运行程序得到了微网的容量配置和优化调度策略。通过对比不同日场景下的结果,我们可以看到我们的程序能够准确地满足微网的电力需求,并且能够降低微网的运行成本和风险。
具体而言,我们的程序不仅给出了微网各个聚合单元的容量配置结果,还给出了各个单元的出力等详细信息。通过对这些信息的分析,我们可以得出结论:通过采用两阶段鲁棒优化算法,我们能够实现微网的高效容量配置和优化调度,从而提高微网的经济性和可靠性。
- 结论 本文基于两阶段鲁棒优化算法,设计了一个能够在不同日场景下进行微网容量配置和优化调度的MATLAB程序。通过该程序,我们能够在不确定出力条件下,为微网选择合适的容量配置,并优化微网的调度策略。通过仿真实验的结果分析,我们发现该程序能够准确满足微网的电力需求,同时降低微网的运行成本和风险。因此,该程序具有较好的实用性和可操作性。
需要注意的是,虽然我们的程序效果非常好,但在实际应用中仍然需要进一步考虑其他因素,如电网交互、能源市场、负荷预测等。我们希望能够在未来的研究中进一步完善该程序,以满足更多实际应用场景的需求。
相关代码,程序地址:http://lanzouw.top/692877756877.html