- 博客(12)
- 收藏
- 关注
原创 AI作业12
长短期记忆网络 LSTM(输入门、遗忘门、输出门) 长短期记忆网络(LSTM)是一种循环神经网络(RNN)的变种,广泛应用于序列建模、自然语言处理等领域。与传统的RNN相比,LSTM引入了三个门控机制:输入门、遗忘门和输出门。这三个门控制着信息在LSTM单元内部的流动,从而有效地解决了传统RNN中梯度消失和梯度爆炸的问题,可以更好地捕捉序列中的长期依赖关系。 输入门用于决定当前时刻的输入信号是否进入LSTM单元。具体来说,它根据当前时刻的输入 和前一个时刻的隐状态来计算一个介于0到1之间的值,表示当前输
2023-06-12 16:45:13 79
原创 AI作业11
前馈网络存在的问题 难以处理序列数据: 前馈神经网络无法直接处理序列数据,需要通过将序列转换为固定长度的向量来处理。这种处理方式可能会丢失序列中的重要信息,影响模型的性能。 过拟合: 当模型过于复杂时容易出现过拟合问题,导致泛化能力较差。 局限性: 前馈神经网络只能解决一些简单的问题,如分类、回归等。对于复杂的任务,如自然语言处理、图像识别等,前馈神经网络的表现往往不够理想。 序列数据 序列数据是指按照一定顺序排列的数据,通常用于描述时间或空间
2023-06-12 16:30:26 93
原创 AI作业10
网络中使用了小尺寸的3x3卷积核和池化操作来实现卷积和下采样,同时通过堆叠多个卷积层和非线性激活函数来增加网络的深度。Inception模块引入了1x1卷积层来降低计算复杂度和网络参数量,GoogLeNet是由Google公司开发的一种深层卷积神经网络模型,使用了多个Inception来提高网络的效率和准确性,因此又被称为Inception v1,每个Inception模块由多个并行的卷积层和池化层组成,以允许网络同时学习多个尺度的特征信息。ResNet是一种深度神经网络,它的结构是通过残差连接构建的。
2023-05-17 00:07:40 86 1
原创 AI作业9
卷积核1、2、3可视化显示:img = conv1.weight.data.squeeze().numpy() img = conv2.weight.data.squeeze().numpy() img = conv3.weight.data.squeeze().numpy()卷积后的特征图1可视化显示:img = feature_map1.data.squeeze().numpy()特征图激活后的可视化显示:img = feature_relu1.data.squeeze().numpy()
2023-05-16 23:18:11 64
原创 AI作业8
步长:在卷积操作中,步长指的是滑动卷积核的距离。具体来说,卷积核每次移动的步长就是步长数值。较大的步长可以减小输出特征图的大小,而较小的步长则可以保留更多的信息。填充:填充指的是向输入特征图的周围添加一圈0值像素或者其他填充方法。这样做的目的通常是为了避免在计算卷积时丢失边缘信息。填充可以增加输出特征图的大小。
2023-05-10 11:32:28 65
原创 AI作业7-卷积
不同的卷积核中给像素邻域的权重不同,使得像素处理结果不同,例如模糊卷积核表示每个邻域像素对最终取值的影响相同,锐化卷积核表示中间点的权重最大,对最终取值影响也就最大。边缘检测卷积核:用于检测图像中的边缘,权重[[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]];权重值表示:1/9.*[[1, 1, 1], [1, 1, 1], [1, 1, 1]];锐化卷积核:用于增强图像的细节,权重值表示:[[0, -1, 0], [-1, 5, -1], [0, -1, 0]];
2023-05-05 22:15:43 148
原创 AI作业6-误差反向传播
可看出经过一次反向传播调参,均方误差从0.21到0.01后,剩余几次均方误差不改变,还是0.01,且除了第一次反向求误差外,其余次数得到误差结果均为0,可见开始时,收敛很快,后来就保持不变。首先向前传播,计算输出,而后计算输出值和预测值之间的误差,将误差反向传播到每一层,计算每个参数对误差的影响(用相应参数对损失函数求偏导,局部梯度),用学习率控制“下山”步幅,更新网络中的参数,重复迭代,直至达到期望效果或达到最大迭代次数。真实输出值:y1, y2=====真实输出值:y1, y2=====
2023-04-25 22:21:27 176
原创 AI作业5
FNN可以看作单层感知机的拓展,只是层次更多,加了隐藏层,且满足层间神经元全连接,层内不连接,且没有反馈机制,只是输入单向流到输出层,因为全连接,所以网络之间层间神经元关系错综复杂,学习和表达能力更强。每个隐藏层都有很多神经元。人工智能最先开始,也是最广泛的概念,然后是机器学习,属于人工智能中的一个分支,深度学习属于近些年的产物,属于机器学习,它是使用深度神经网络的技术。区别:主要是深度不同,二者擅长解决的问题不同,深度学习比传统浅层学习模型更加复杂,但是可以解决传统浅层学习不能解决的一些问题,各有利弊。
2023-04-14 09:13:32 52
原创 AI作业4
算法:样本中心化(使得计算量变小)->计算协方差矩阵(表示各点之间的相关程度,协方差为0则彼此无关)->协方差矩阵的特征值分解,对特征根排序->选择前L个最大特征根对应的特征向量组成映射矩阵(投影后选方差最大的L个)K-means是初始化质心后根据质心与各点的距离判断是否属于一个集合,然后利用数据重新计算质心位置,再重新将数据放入距离最近质心的集合中,反复迭代,直至质心基本保持不变。将一个复杂矩阵变成三个简单矩阵,其中,中间的那个只有主对角线上有值,其他元素均为0的矩阵中的值就是奇异值。
2023-04-01 13:22:53 111
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人