前言
由于我其实并不知道线性性质到底是什么,所以按照自己的感觉把所有我觉得是线性性质解决的题目丢了进来。
那么来看题吧。
题目
BZOJ2698
独立考虑每个格子被刷到的概率。然后为了方便考虑k次操作以后这个格子不被刷到的概率,然后就要求1次操作以后这个格子不被刷到的概率,再为了方便[?],统计有多少种合法方案通过当前点x,记做sum,那么这个点1次操作之后被刷到的概率就是sum/tot,tot为总得合法方案数。
然后这个时候问题就完美的解决啦。
至于计算sum和计算tot的方法,其实是怎么暴力怎么来就好了。
Tag:快速幂,计算贡献
BZOJ2969
这个分类讨论恶心到我了 赔钱。[?]
简单来说就是单独考虑一个方块在k次操作后被染色1的概率,但是这个比较麻烦所以求k次操作之后不被染色的概率比较方便。那么不被染色的概率怎么求呢,就是一次不被染色的概率^K,那么一次不被染色的概率怎么求呢。
虽然应该也有别的方法可以求但是可以在这个时候再转回来求一次被染色的概率是多少,那么就是要求矩形覆盖了当前这个点。那么进行分类讨论求出覆盖当前点的方案数,除以总方案数就是概率。
Tag:快速幂,计算贡献
BZOJ1989
图是一棵树。其实大概是计数问题吧。
某一段是奖励线路的一部分的方案数量*某一段是免费路径的方案数量。
最后再除以一个总方案数量就好了。
意外简单的树形计数问题?
令 cntx c n t x 表示以x为根的子树有多少个节点,那么答案就是
(∑x=1n(cnt