[贪心] 最大子矩阵 HUSTOJ2834

题目描述

已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。

比如,如下4 * 4的矩阵

0  -2 -7  0
9  2 -6  2
-4  1 -4  1
-1  8  0 -2

的最大子矩阵是

 9 2
-4 1
-1 8

这个子矩阵的大小是15。

输入

输入是一个N*N的矩阵。输入的第一行给出N(0<N≤100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[-127,127]。


输出

输出最大子矩阵的大小。


样例输入

4
0 -2 -7  0
9  2 -6  2
-4  1 -4  1
-1  8  0 -2

样例输出

15

//压缩二维矩阵
#include <iostream>
using namespace std;
int a[101][101];
int n;
int jisuan(int t[]) //求t[]最大子序列和
{
	int u=0,sum=0;
	for(int i=1;i<=n;i++)
	{
		sum+=t[i];
		if(sum<0) sum=0;
		if(u<sum) u=sum;
	}
	return u;
}
int main()
{
	while(cin>>n)
        {
		for(int i=1;i<=n;i++)
			for(int j=1;j<=n;j++)
			cin>>a[i][j];
		int maxx=-9999999;
		for(int i=1;i<=n;i++)  //从1~n列为上界
		{
		    int t[101]={0};
		    for(int k=0;k<=n-i;k++)  //纵向压缩的列数 1~n-i
		    {
			for(int j=1;j<=n;j++)  //计算压缩后为一行 t[n]
			{
				t[j]+=a[i+k][j];
			}
			int temp=jisuan(t);  //当前行数子矩阵的最大值
			if(maxx<temp) maxx=temp;
		    }
		}
		cout<<maxx<<endl;
	}
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值