题目描述
已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。
比如,如下4 * 4的矩阵
0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
的最大子矩阵是
9 2 -4 1 -1 8
这个子矩阵的大小是15。
输入
输入是一个N*N的矩阵。输入的第一行给出N(0<N≤100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[-127,127]。
输出
输出最大子矩阵的大小。
样例输入
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
样例输出
15
//压缩二维矩阵
#include <iostream>
using namespace std;
int a[101][101];
int n;
int jisuan(int t[]) //求t[]最大子序列和
{
int u=0,sum=0;
for(int i=1;i<=n;i++)
{
sum+=t[i];
if(sum<0) sum=0;
if(u<sum) u=sum;
}
return u;
}
int main()
{
while(cin>>n)
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
cin>>a[i][j];
int maxx=-9999999;
for(int i=1;i<=n;i++) //从1~n列为上界
{
int t[101]={0};
for(int k=0;k<=n-i;k++) //纵向压缩的列数 1~n-i
{
for(int j=1;j<=n;j++) //计算压缩后为一行 t[n]
{
t[j]+=a[i+k][j];
}
int temp=jisuan(t); //当前行数子矩阵的最大值
if(maxx<temp) maxx=temp;
}
}
cout<<maxx<<endl;
}
return 0;
}