p1m2
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 170 Accepted Submission(s): 50
Problem Description
度度熊很喜欢数组!!
我们称一个整数数组为稳定的,若且唯若其同时符合以下两个条件:
1. 数组里面的元素都是非负整数。
2. 数组里面最大的元素跟最小的元素的差值不超过 1。
举例而言,[1,2,1,2] 是稳定的,而 [−1,0,−1] 跟 [1,2,3] 都不是。
现在,定义一个在整数数组进行的操作:
* 选择数组中两个不同的元素 a 以及 b,将 a 减去 2,以及将 b 加上 1。
举例而言,[1,2,3] 经过一次操作后,有可能变为 [−1,2,4] 或 [2,2,1]。
现在给定一个整数数组,在任意进行操作后,请问在所有可能达到的稳定数组中,拥有最大的『数组中的最小值』的那些数组,此值是多少呢?
Input
输入的第一行有一个正整数 T,代表接下来有几组测试数据。
对于每组测试数据:
第一行有一个正整数 N。
接下来的一行有 N 个非负整数 xi,代表给定的数组。
* 1≤N≤3×105
* 0≤xi≤108
* 1≤T≤18
* 至多 1 组测试数据中的 N>30000
Output
对于每一组测试数据,请依序各自在一行内输出一个整数,代表可能到达的平衡状态中最大的『数组中的最小值』,如果无法达成平衡状态,则输出 −1。
Sample Input
2
3
1 2 4
2
0 100000000
Sample Output
2 33333333
Source
#include <bits/stdc++.h>
using namespace std;
const int mn = 3e5 + 10;
int n;
int a[mn];
bool check(int k)
{
long long x = 0, y = 0;
for (int i = 1; i <= n; i++)
{
if (a[i] < k)
x += (long long)(k - a[i]); /// 将a[i]增至k 每次+1
else
y += (long long)(a[i] - k) / 2; /// 将a[i]减至k 每次-2
}
return x <= y;
}
int main()
{
int T;
scanf("%d", &T);
while (T--)
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)
scanf("%d", &a[i]);
if (n == 1)
{
printf("%d\n", a[1]);
continue;
}
int l = 0, r = 1e9;
int ans = -1;
while (l <= r)
{
int mid = (l + r) / 2;
if (check(mid))
{
ans = mid;
l = mid + 1;
}
else
r = mid - 1;
}
printf("%d\n", ans);
}
return 0;
}