图像识别实战(四)------动态图&模型训练

图像识别实战(四)------动态图&模型训练

动态图

动态图对应的是命令式编程

可以不用事先定义神经网络的结构,将神经网络的定义和执行同步进行

与之相反的便是静态图,静态图和声明式编程相关:

需要事先定义好神经网络的结构,然后再执行整个图结构。

对比

如果想要实现如下功能。

  1. 如果inp1各元素之和小于inp2各元素之和,那么执行inp1与 inp2各元素对应相加。

  2. 如果inp1各元素之和大于等于inp2各元素之和,那么执行inp1与 inp2各元素对应相减。

使用动态图进行训练

import paddle.fluid asfluid	
import numpy as np	
inp1 = np.random.rand(4, 3, 3)	
inp2 = np.random.rand(4, 3, 3)	
# dynamic graph	
with fluid.dygraph.guard():	
    if np.sum(inp1) <np.sum(inp2):	
        x =fluid.layers
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值