Hardware_AI
文章平均质量分 78
Hardware_AI
Triton安
这个作者很懒,什么都没留下…
展开
-
Pytorch-Mobile-Android(3) 部署自己模型
一、例子:1.用torch.jit.script转torchscript,不要用torch.jit.trace理由见:【Pytorch部署】TorchScript - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/135911580import vision_transformerfrom torch.utils.mobile_optimizer import optimize_for_mobileimport torchmodel_vit原创 2021-10-30 14:19:41 · 4868 阅读 · 1 评论 -
Transformer-FLOPs推导过程
一、Transformer结构图二、分部分计算FLOPs1.Encoder(1)input_embedingInput假设是一个维度为vocab的向量,通过Input_embeding部分变成 vocab*d_model的矩阵:即(vocab*1)@(1*d_model)=vocab*d_model次乘法。再乘上d_model ** 0.5 所以 Input_embeding的FLOPs = vocab*d_model*2(3)Positional...原创 2021-10-12 21:32:45 · 4945 阅读 · 1 评论 -
Pytorch-Mobile: FLOPs的计算
一、定义区分FLOPS和FLOPs:• FLOPS 注意全部大写 是floating point of per second的缩写,意指每秒浮点运算次数。可以理解为计算速度,用来衡量硬件的性能。• FLOPs 是floating point of operations的缩写,是浮点运算次数,理解为计算量,可以用来衡量算法/模型复杂度。(ps:FLOPs 是模型推理时间的一个参考量,但并不能百分百表示该模型推理时间的长短,因为乘法和加法计算不一样,乘法的时间一般是加法时间的四倍,但现在有很多优化卷原创 2021-10-09 13:20:27 · 343 阅读 · 0 评论 -
论文笔记——Attention is all you need(2)代码
一原创 2021-09-19 11:44:57 · 2935 阅读 · 0 评论 -
python cookbook——数据结构和算法
一、将序列分解为单独的变量1.问题将一个包含N个元素的序列,分解为N个单独的变量2.解决方案任何序列或者可迭代对象都可以通过赋值操作分解原创 2021-09-15 18:45:13 · 259 阅读 · 0 评论 -
Pytorch-Mobile-Android(2)
Android-Pytorch:QUICKSTART WITH A HELLOWORLD EXAMPLE(官网例1)1.模型构成:是一个resnet18模型(model.ptl),用来识别静态图片,图片和模型都存放在了assets目录下。2.Gradle Dependencies:上一篇文章说过,build.gradle是一个配置构建文件,其中dependencies可以理解为插件加载区:implementation是远程依赖声明,意味着如本地没有所提示的插件,那就...原创 2021-07-13 14:18:32 · 1028 阅读 · 0 评论 -
Pytorch-Mobile-Android(1)
Android Studio简介(后简称AS)1.Android系统架构(1)Linux内核层:給Android硬件提供底层驱动(2)系统运行库层(Libraries)提供库函数,提供特性支持,如数据库、3D绘图、浏览器内核等。(3)应用架构层提供应用程序可能用到的API(4)应用层手机上的所有应用程序2.AS项目结构简介以pytorch官网的第一个项目HelloWolrdAPP的项目结构为例:(1).gradle和.idea是AS自动生成的文件,无需关心原创 2021-07-13 13:43:54 · 520 阅读 · 0 评论 -
Pytorch笔记汇总-基本神经网络搭建
1原创 2021-07-04 22:10:01 · 55 阅读 · 0 评论 -
Pytorch笔记汇总-Tensor的基本操作
1.GPU使用时要初始化:import torch as t device = t.device("cuda") #可为'cpu'a = a.to(device)b = b.to(device)print(a.device) #查看变量在cpu还是在gpu上2.torch.matmul()矩阵乘法3.自动求导import torch as t from torch import autogradx = t.tensor(1.) #tensor只能是浮点数a = t.t原创 2021-07-04 16:37:32 · 263 阅读 · 0 评论