- 博客(5)
- 收藏
- 关注
原创 百度的HGNetV2详解
最近在读目标检测论文D-FINE时,发现其骨干网络是百度的HGNetV2,而且最近很多其他目标检测网络也都将骨干网络替换成了HGNetV2,其综合性能和目前主要的图像分类网络对比如下。综合计算量和精度,HGNetV2是目前很实用的一种网络架构,但是百度并未发表它相关的论文,网上也没有很详细的讲解,因此就扒了一下D-FINE中HGNetV2部分的源码,将其整个网络架构记录下来分享一下。模型名称Top-1精度参数量(M)计算量(GFLOPs)架构创新点适用场景80.3%5.80.9。
2025-08-20 14:34:40
1645
原创 一文掌握Transformer所有细节
Transformer结构的编码部分,是对每一个输入词向量进行信息的混合,注意力机制就体现在对不同信息混合的比例上,编码后词向量的数量和每个词向量的维度都没有改变。解码部分训练阶段和测试阶段是有区别的,训练阶段将gt进行右移后输入到解码网络中,每个词向量先跟输入部分自己能看到的(左侧的)信息进行混合,混合生成的词向量再和编码的最终结果进行信息混合,经过混合和变换后生成最终输出结果;
2025-08-06 18:43:19
905
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅