二维数组的定义与初始化
二维数组与一维数组的定义和使用有许多共性。
1. 二维数组在使用前必须先定义和初始化,如果不定义直接使用将报错、定义了不初始化,使用时将会是随机数。
2.定义二维数组时,使用连续的两个[ ],[ ]内不能用变量表示元素个数(在引用时可以,如for内初始化数组),也不能用实数表示元素个数
{ }只能在数组定义的同时使用,由于二维数组在概念上可想象为”分行“的形式,因此也可以在初值的{ }中再嵌套一层{ },例如:
int a[2][3]={0, 1, 2, 3, 4, 5}; /*也可以写成下面的形式*/
int a[2][3]={ {0, 1, 2}, {3, 4, 5}}; /*第0行为0,1,2; 第1行为*3,4,5/
定义二维数组时能省略第一个[ ]内的行数,第二个[ ]内的列数永远不能省略,例如:
int a[2][3]={0, 1, 2, 3, 4, 5}; /*也可以写成下面的形式*/
int a[][3]={ {0, 1, 2}, {3, 4, 5}}; /*有几个内层{ }就有几行*/
存储形式
计算机内存是连续和线性的。
这是一维数组a[5]在内存中的存储形式:
int a[5]={0, 1, 2, 3, 4};
a[0] | a[1] | a[2] | a[3] | a[4] |
---|---|---|---|---|
0 | 1 | 2 | 3 | 4 |
这是二维数组b[3][4]在内存中的存储形式:
int b[3][4]={0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
是不是跟一维数组有异曲同工之妙,二维数组a[m][n]可以看成是m个一维数组a[n]的组合。通过这样的存储形式,我们可以求出二维数组的行数row、列数column:
int a[9][10]={};
int row=sizeof(a)/sizeof(a[0]); /*行数*/
int column=sizeof(a[0])/sizeof(a[0][0]); /*列数*/
二维数组查找的暴力求解
从数组第一个元素开始,遍历整个二维数组,直到找到目标元素,设置变量yn(意思是Yes Or No),yn为0表示没找到target
#include <stdio.h>
#include <stdlib.h>
/*二维数组暴力搜索*/
int main()
{
int a[3][3]={1, 2, 3, 11, 21, 31, 99, 100, 101};
int row=sizeof(a)/sizeof(a[0]);
int column=sizeof(a[0])/sizeof(a[0][0]);
int i, j;
int target=1, yn=0;
/*暴力搜索*/
for(i=0, yn=0; i<row; i++)
{
for(j=0; j<column; j++)
{
if(a[i][j]==target)
{
yn=1;
break;
}
}
if(yn==1)
break;
}
if(yn==1)
printf("target在a[%d][%d]处\n", i, j);
else
printf("找不到target\n");
return 0;
}
运行结果:
二维数组的二分查找
二维数组能用二分查找,前提是:
二维数组,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序;或者每一行都按照从左到右递减的顺序排序,每一列都按照从上到下递减的顺序排序
虽然从左到右、从上到下都是递增状态,但是也分两种情况:
1.每行的第一个整数大于上一行的最后一个整数
2.每行的第一个整数与上一行的最后一个整数关系不知,这是《剑指offer》里的一道题
第一种情况:可以把二维数组转换成一维数组,再从一维数组里进行二分查找,得到的结果是一维数组的mid,再转换成二维数组的行列就得到target再二维数组的下标了
#include <stdio.h>
#include <stdlib.h>
/*二维数组二分查找,情况1*/
int main()
{
int a[5][8]={};
int b[40]={}; /*二维数组转换成一维数组*/
int row=sizeof(a)/sizeof(a[0]); /*行数,数组除以行数得到行数*/
int column=sizeof(a[0])/sizeof(a[0][0]); /*列数,数组一行除以元素大小得到列数*/
int i, j, k=0;
int target;
/*赋a初值、打印*/
for(i=0; i<row; i++)
{
for(j=0; j<column; j++)
{
a[i][j]=k++;
printf("%-2d ", a[i][j]);
}
printf("\n");
}
printf("\n");
/*二维数组a转换成一维数组b,并输出b*/
for(i=0, k=0; i<row; i++)
{
for(j=0; j<column; j++)
{
b[k]=a[i][j];
printf("%-2d ", b[k++]);
}
}
printf("\n");
/*对数组b进行二分查找*/
i=0, j=row*column, k=0; /*i为low,j为high,k为mid*/
target=35;
while(i<=j)
{
k=(i+j)/2;
if(b[k]<target)
i=k+1;
else if(b[k]>target)
j=k-1;
else
break;
}
if(i>j)
printf("没找到target");
else
printf("traget %d的下标为a[%d][%d]", target, k/column, k%column);
return 0;
}
运行结果:
第二种情况:从i=0开始,对a[0][0]右边做行的二分查找,对a[0][0]下面做列的二分查找;a[1][1]、a[2][2]…同理操作,直到遍历完数组
#include <stdio.h>
#include <stdlib.h>
/*二维数组的二分查找,利用对角线,即从row==column处依次对该行、该列进行二分查找*/
/*对角线将二维数组划分为两个三角形,对上三角形做行的二分查找,对下三角形做列的二分查找*/
int main()
{
int a[7][5]={};
int i, j, k;
int low, high, mid;
int target;
/*a赋值*/
for(i=0, k=0; i<7; i++)
{
/*横向向右*/
for(j=i; j<5; j++)
a[i][j]=k++;
/*竖向向下*/
for(j=i+1; j<7; j++)
a[j][i]=k++;
}
/*a打印*/
for(i=0; i<7; i++)
{
for(j=0; j<5; j++)
printf("%-3d", a[i][j]);
printf("\n");
}
printf("\n");
/*二分查找a*/
k=5<7?5:7; /*对角线长度取决于最短的边*/
target=34;
for(i=0; i<k; i++)
{
/*行查找*/
low=i, high=4 ;
while(low<=high)
{
mid=(low+high)/2;
if(a[i][mid]<target)
low=mid+1;
else if(a[i][mid]>target)
high=mid-1;
else
break;
}
if(a[i][mid]==target)
{
printf("找到了,下标是a[%d][%d]\n", i, mid);
break;
}
/*列查找*/
low=i, high=6;
while(low<=high)
{
mid=(low+high)/2;
if(a[mid][i]<target)
low=mid+1;
else if(a[mid][i]>target)
high=mid-1;
else
break;
}
if(a[mid][i]==target)
{
printf("找到%d了,下标是a[%d][%d]\n", target, mid, i);
break;
}
}
if(low>high)
printf("没找到");
return 0;
}
运行结果:
如果看不懂文字解释,可以看这个视频演示:4_1_二维数组查找目标元素(二分查找)
线性查找(剑指offer解法)
线性查找的前提是上面二分查找的第二种情况,即:
二维数组,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序;不知道每行的第一个整数与上一行的最后一个整数的关系
因为数组从左往右递增、从上往下递增,那么在数组右上角处往左递减、往下递增;左下角往右递增、往上递减
右上角:右上角这个元素,肯定是本行最大、本列最小的元素;线性查找正是利用了这个特点
#include <stdio.h>
#include <stdlib.h>
/*右上角查找*/
int main()
{
int a[7][5]={};
int row=sizeof(a)/sizeof(a[0]);
int column=sizeof(a[0])/sizeof(a[0][0]);
int i, j, k;
int target;
/*a赋值*/
for(i=0, k=0; i<7; i++)
{
/*横向向右*/
for(j=i; j<5; j++)
a[i][j]=k++;
/*竖向向下*/
for(j=i+1; j<7; j++)
a[j][i]=k++;
}
/*a打印*/
for(i=0; i<7; i++)
{
for(j=0; j<5; j++)
printf("%-3d", a[i][j]);
printf("\n");
}
printf("\n");
/*右上角查找*/
i=0; /*i表示当前行*/
j=column-1; /*j表示当前列*/
target=18;
while(i<row&&j>=0)
{
if(a[i][j]<target)
i++;
else if(a[i][j]>target)
j--;
else
break;
}
if(i<row&&j>=0)
printf("target:%d,在数组a[%d][%d]处\n", target, i, j);
else
printf("没找到target");
return 0;
}
运行结果:
左下角查找同理,只需要将/*右上角查找*/
替换成:
/*左下角查找*/
i=row-1;
j=0;
target=4;
while(i>=0&&j<column)
{
if(a[i][j]<target)
j++;
else if(a[i][j]>target)
i--;
else
break;
}
if(i>=0&&j<column)
printf("target:%d,在数组a[%d][%d]处\n", target, i, j);
else
printf("没找到target")
运行结果:
一维数组
一维数组的的查找和排序方法可以看我的另一篇文章,包括1.顺序查找 2.二分查找; 1.(简单)选择排序法 2.冒泡排序法 3.(直接)插入排序法:
一维数组查询排序(←点击查看原文)