算法 - 动态规划问题

什么是动态规划

动态规划(dynamic programing)用于求解包含重叠子问题的最优化解的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解递推出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。

它的大概意思先将一件事情分成若干阶段,然后通过阶段之间的转移达到目标。由于转移的方向通常是多个,因此这个时候就需要决策选择具体向哪一个转移方向。

动态规划所要解决的事情通常是完成一个具体的目标,而这个目标往往是最优解。这种解题思路最初就是用来求最优解的,只不过有的时候顺便可以解决可行解,可行解总数等问题,这其实是动态规划的副产物。

示例题目

爬楼梯问题

  • 题目:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数。

  • 示例

输入: 2

输出: 2

解释:1阶+1阶 或 2阶有这两种方法可以爬到楼顶。

输入: 3

输出: 3

解释: 1阶+1阶+1阶,1阶+2阶 或 2阶+1阶 有三种方法可以爬到楼顶。

  • 解题思路

1) 代码初步成型:

想要爬到第n层阶梯,必然是要从第n-1层阶梯或者第n-2层阶梯爬上来的。那么爬到第n-1层阶梯的方法数 + 爬到第n - 2层阶梯的方法数 = 爬到第n层阶梯的方法数。假设能有一个函数来计算爬到第n层阶梯的方法数,姑且给这个函数命名为dpFunc,那么爬到第n层阶梯的方法数可以用dpFunc(n)来表示。根据我们刚才的思路可以写出dpFunc(n) = dpFunc(n - 1) + dpFunc(n - 2),有没有一点眼熟呢? 不妨回想一下那个夏天,坐在考场上,顶着空白的大脑小心翼翼的低头看着那张已经被手汗浸湿的小抄是不是赫然写着如下代码? 没错,这跟大学时代必考题目斐波那契数列不能说是非常相似吧,只能说是一模一样!

function climbStairs(n: number): number {
   const dpFunc = (n: number): number => {
        return dpFunc(n - 1) + dpFunc(n - 2)
    }
    return dpFunc(n)
};

2) 代码完善:

试想一下,如果递归运行这个函数,dp传入的值将没有界限,最终会导致栈溢出。所以我们需要设置一下这个递归函数的界限,至少我们要保证n - 1和n - 2这两个阶梯是存在的。已知dpFunc(1)=1,dpFunc(2)=2,当然dpFunc(0)的结果就是0咯。

function climbStairs(n: number): number {
   const dpFunc = (i: number): number => {
        if( i < 3 ) return i
        return dpFunc(i - 1) + dpFunc(i - 2)
    }
    return dpFunc(n)
};

3) 代码优化

以上得出的代码已经可以正常运行了,但经过尝试这个算法的效率非常的低。继续思考为啥会出现这样的情况呢?假设我们要计算dp(6),来画一下整个运算的过程(如图)

 不难发现这个算法目前还存在着大量的重复计算,怎么避免这些重复计算呢?给上图这个二叉树结构“剪个枝”好像是个办法。那么就引入一个记忆化搜索吧,典型的空间换时间。声明一个dp的数组,将计算过的dpFunc(n),以n为下标来缓存起来。

function climbStairs(n: number): number {
   if (n < 3) return n
   const dp: number[] = new Array(n + 1)
   dp[0] = 0
   dp[1] = 1
   dp[2] = 2
   const dpFunc = (i: number): number => {
        If (!dp[i]) {
            dp[i] = dpFunc(i - 1) + dpFunc(i - 2)
        }
        return dp[i]
    }
    return dpFunc(n)
};

4) 继续优化

这个题目的边界和遍历顺序 都是非常明确的,我们可以尝试使用for循环遍历来代替递归的写法。

function climbStairs(n: number): number {
   if (n < 3) return n
   const dp: number[] = new Array(n + 1)
   dp[0] = 0
   dp[1] = 1
   dp[2] = 2

   for(let i = 3; i <= n; i++) {
       dp[i] = dp[i - 1] + dp[i -  2]
   }

    return dp[n]
};

至此,时间复杂度和空间复杂度都是O(n)了,其实还可以继续进行优化,那就是

接下来,加大力度!

使用最小花费爬楼梯

  • 题目:

数组的每个下标作为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i](下标从 0 开始)。

每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶 梯或者爬两个阶梯。

请你找出达到楼层顶部的最低花费。在开始时,你可以选择从下标为 0 或 1 的元素作为初始阶梯。

  • 示例:

输入:cost = [10, 15, 20]

输出:15

解释:最低花费是从 cost[1] 开始,然后走两步即可到阶梯顶,一共花费 15 。

输入:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]

输出:6

解释:最低花费方式是从 cost[0] 开始,逐个经过那些 1 ,跳过 cost[3] ,共花费6

  • 解题思路

想要爬到第n层阶梯,必然是要从从n-1层阶梯或者n-2层阶梯爬上来的,所以爬到第n层所需的最小体力=Math.min(爬到第n-1层阶梯所需的最小体力 + 第n-1层消耗的体力, 爬到第n-2层阶梯所需的最小体力 + 第n-2层消耗的体力)。声明数组dp, 已知我们可以从下标为0和1的阶梯开始,所以相当于dp[0]和dp[1]都是0。至此循环的起点的已经确定了,那么终点边界在哪呢?题目要求的是爬到第n层阶梯的最小体力吗?仔细读题会发现,他要求的是爬过第n层阶梯的最小体力,也就是说我们要求的是dp[n+1]。

function minCostClimbingStairs(cost: number[]): number {

   const dp: number[] = new Array(cost.length + 1)
   dp[0] = 0
   dp[1] = 0

   for(let i = 2; i <= cost.length; i++) {
       dp[i] = Math.min(dp[i - 2] + cost[i - 2], dp[i - 1] + cost[i - 1])
   }

    return dp[cost.length]
};

时间复杂度和空间复杂度都是O(n)了!

动归思路,步骤简单总结

  1. 确定dp数组以及下标的含义。

  2. 确定动态转移方程。

  3. 找边界,从哪开始,从哪结束。

  4. 打印出dp数组,debug检验算法。

  5. 考虑算法优化。

leetcode 动归基础题目整理

  • 509. 斐波那契数列

  • 70. 爬楼梯

  • 746. 使用最小花费爬楼梯

  • 62. 不同路径

  • 63. 不同路径II

  • 343. 整数拆分

  • 1143. 最长公共子序列

小试牛刀

迷宫中有只老鼠,迷宫中某个地方有一大块奶酪,迷宫用n×m网格表示,0代表不能通行,1代表可以通行,9代表奶酪位置,从左上角(0,0)开始。编写一个算法,确定老鼠能否找到奶酪,矩阵示例如下:

1

1

1

1

1

0

0

1

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

1

0

1

0

9

0

1

1

1

1

1

0

1

0

0

1

1

0

1

0

1

1

0

1

1

0

0

0

0

1

0

1

1

1

1

1

1

1

1

1

  • 这个矩阵我们用一个二维数组maze来描述,即:

maze = [
    [1, 1, 1, 1, 1, 0, 0, 1],
    [1, 0, 1, 0, 1, 1, 1, 1],
    [1, 1, 1, 0, 0, 0, 0, 0],
    [1, 0, 1, 0, 9, 0, 1, 1],
    [1, 1, 1, 0, 1, 0, 0, 1],
    [1, 0, 1, 0, 1, 1, 0, 1],
    [1, 0, 0, 0, 0, 1, 0, 1],
    [1, 1, 1, 1, 1, 1, 1, 1]
]
  • 解题思路:

1) 确定dp数组以及下标的含义:既然输入的矩阵用二维数组表示了,那我们也整个二维数组吧。如果dp[0][0]可以直接得到我们要的答案就好了,不妨就这么假设吧。

2) 确定动态转移方程:想要确定起点(0, 0)出发能够找到奶酪,其实只需要确定从(0,1)和(1,0)其中一个方格数字为1且能够找到奶酪。以此类推不难发现,以y为横坐标、x为纵坐标,在保证(y ± 1, x ± 1)四个点都存在的情况下dpFunc(x, y) = dpFunc(x - 1, y) || dpFunc(x + 1, y) || dpFunc(x, y - 1) || dpFunc(x, y + 1),这就是我们所需要的动态转移方程啦。

3) 找边界,从哪开始,从哪结束:起点自然是(0,0),至于终点会有以下几种情况。要么超出边界,要么遇到0走不下去,要么读到缓存,要么找到奶酪。来先按照目前思路写个算法试试看:

const findCheese = (maze) => {
  const dp = new Array(maze.length)

  const canFindCheese = (x, y) => {
    if (!dp[x]) dp[x] = new Array(maze[0].length)
    if (typeof dp[x][y] === 'boolean') return dp[x][y]

    if (!maze[x][y]) {
      dp[x][y] = false
      return dp[x][y]
    }
    if (maze[x][y] === 9) {
      dp[x][y] = true
      return dp[x][y]
    }

    const arr = [[x, y+1], [x+1, y], [x, y-1], [x-1, y]].filter(point => {
      return point[0] >= 0 && point[0] < maze.length && point[1] >= 0 && point[1] < maze[0].length
    })

    let res = false
    for(let i = 0; i < arr.length; i++) {
      res = canFindCheese(arr[i][0], arr[i][1], x, y)
      if (res) break
    }

    dp[x][y] = res

    return dp[x][y]
  }


  return canFindCheese(0, 0)
}

4) 尝试运行程序,打印dp数组,栈溢出,到底哪出了问题呢?分析计算过程可以发现,当“1”连成一圈的时候,老鼠也会不断的转圈,这样的计算过程就出现了无限套娃的情况,为了避免这个问题我们需要让老鼠不走重复坐标,当老鼠“走”过某坐标的时候做个标记,让老鼠不要再重复走当前坐标,问题就能解决了。

const findCheese = (maze) => {
  const dp = new Array(maze.length)

  const canFindCheese = (x, y) => {
    if (!dp[x]) dp[x] = new Array(maze[0].length)
    if (typeof dp[x][y] === 'boolean') return dp[x][y]

    if (!maze[x][y]) {
      dp[x][y] = false
      return dp[x][y]
    }
    if (maze[x][y] === 9) {
      dp[x][y] = true
      return dp[x][y]
    }

    const arr = [[x, y+1], [x+1, y], [x, y-1], [x-1, y]].filter(point => {
      return point[0] >= 0 && point[0] < maze.length && point[1] >= 0 && point[1] < maze[0].length
    })

    dp[x][y] = false
    for(let i = 0; i < arr.length; i++) {
      dp[x][y] = canFindCheese(arr[i][0], arr[i][1])
      if (dp[x][y]) break
    }

    return dp[x][y]
  }

  return canFindCheese(0, 0)
}

欢迎各位老师指导交流~

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值