朴素高斯求解
function x= oridinarygauss(a,b)
n=length(b);
for j=1:n-1
for i=j+1:n
mult=a(i,j)/a(j,j);
for k=j+1:n
a(i,k)=a(i,k)-mult*a(j,k);
end
b(i)=b(i)-mult*b(j);
end
end
x(n)=b(n)/a(n,n);
for i=n-1:-1:1
for j=i+1:n
b(i)=b(i)-a(i,j)*x(j);
end
x(i)=b(i)/a(i,i);
end
end
说明:输入参数a为系数矩阵,b为Ax=b的b值。
LU分解
function [L,U,x] = lureslove(a,b)
n=size(a);n=n(1);
L=eye(n);U=a;
for j=1:n-1
for i=j+1:n
mult=U(i,j)/U(j,j);
L(i,j)=mult;
for k=1:n
U(i,k)=U(i,k)-mult*U(j,k);
end
end
end
c(1)=b(1);
for i=2:n
for j=1:i-1
b(i)=b(i)-L(i,j)*c(j);
end
c(i)=b(i);
end
x(n)=c(n)/U(n,n);
for i=n-1:-1:1
for j=i+1:n
c(i)=c(i)-U(i,j)*x(j);
end
x(i)=c(i)/U(i,i);
end
end
说明:输入参数a为系数矩阵,b为Ax=b的b值。
雅可比迭代
function [x,i] = yakebi(a,b,e,tol)
n=length(b);
D=diag(a);
D=spdiags(D,0,n,n);
r=a-D;i=0;
x=zeros(n,1);
while (norm((x-e),inf)>tol)
x=D\(b-r*x);
i=i+1;
end
end
说明:输入参数a为系数矩阵,b为Ax=b的b值。e为初始估计解常取e=zeros(n,1);tol为求解控制精度(用无穷范数表示的前向误差)。
高斯-塞德尔方法
function x = gaussseidel(a,b,k)
n=length(b);
D=diag(a);
D=spdiags(D,0,n,n);
e=inv(D);
L=tril(a,-1);U=triu(a,1);
x=zeros(n,1);
for i=1:k
for j=1:n
x(j)=e(j,j)*(b(j)-U(j,:)*x-L(j,:)*x);
end
end
说明:输入参数a为系数矩阵,b为Ax=b的b值。k为迭代次数。
连续过松弛(SOR)
function x = sor(a,b,w,k)
n=length(b);
D=diag(a);
D=spdiags(D,0,n,n);
e=inv(D);
L=tril(a,-1);U=triu(a,1);
x=zeros(n,1);
for i=1:k
for j=1:n
x(j)=(1-w)*x(j)+w*e(j,j)*(b(j)-U(j,:)*x-L(j,:)*x);
end
end
说明:输入参数a为系数矩阵,b为Ax=b的b值。k为迭代次数。w为松弛参数。