方程组求解matlab实现(朴素高斯求解、LU分解、雅可比迭代方法、高斯-塞德尔方法、连续过松弛(SOR))

朴素高斯求解

function x= oridinarygauss(a,b)
n=length(b);
for j=1:n-1
    for i=j+1:n
        mult=a(i,j)/a(j,j);
        for k=j+1:n
            a(i,k)=a(i,k)-mult*a(j,k);
        end
        b(i)=b(i)-mult*b(j);
    end
end
x(n)=b(n)/a(n,n);
for i=n-1:-1:1
    for j=i+1:n
        b(i)=b(i)-a(i,j)*x(j);
    end
    x(i)=b(i)/a(i,i);
end
end

说明:输入参数a为系数矩阵,b为Ax=b的b值。

LU分解

function [L,U,x] = lureslove(a,b)
n=size(a);n=n(1);
L=eye(n);U=a;
for j=1:n-1
    for i=j+1:n
        mult=U(i,j)/U(j,j);
        L(i,j)=mult;
        for k=1:n
            U(i,k)=U(i,k)-mult*U(j,k);
        end
    end
end
c(1)=b(1);
for i=2:n
    for j=1:i-1
        b(i)=b(i)-L(i,j)*c(j);
    end
    c(i)=b(i);
end
x(n)=c(n)/U(n,n);
for i=n-1:-1:1
    for j=i+1:n
        c(i)=c(i)-U(i,j)*x(j);
    end
    x(i)=c(i)/U(i,i);
end
end

说明:输入参数a为系数矩阵,b为Ax=b的b值。

雅可比迭代

function [x,i] = yakebi(a,b,e,tol)
n=length(b);
D=diag(a);
D=spdiags(D,0,n,n);
r=a-D;i=0;
x=zeros(n,1);
while (norm((x-e),inf)>tol) 
    x=D\(b-r*x);
    i=i+1;
end
end

说明:输入参数a为系数矩阵,b为Ax=b的b值。e为初始估计解常取e=zeros(n,1);tol为求解控制精度(用无穷范数表示的前向误差)。

高斯-塞德尔方法

function x = gaussseidel(a,b,k)
n=length(b);
D=diag(a);
D=spdiags(D,0,n,n);
e=inv(D);
L=tril(a,-1);U=triu(a,1);
x=zeros(n,1);
for i=1:k
    for j=1:n
        x(j)=e(j,j)*(b(j)-U(j,:)*x-L(j,:)*x);
    end
end

说明:输入参数a为系数矩阵,b为Ax=b的b值。k为迭代次数。

连续过松弛(SOR)

function x = sor(a,b,w,k)
n=length(b);
D=diag(a);
D=spdiags(D,0,n,n);
e=inv(D);
L=tril(a,-1);U=triu(a,1);
x=zeros(n,1);
for i=1:k
    for j=1:n
        x(j)=(1-w)*x(j)+w*e(j,j)*(b(j)-U(j,:)*x-L(j,:)*x);
    end
end

说明:输入参数a为系数矩阵,b为Ax=b的b值。k为迭代次数。w为松弛参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值