方程组求解matlab实现(朴素高斯求解、LU分解、雅可比迭代方法、高斯-塞德尔方法、连续过松弛(SOR))

朴素高斯求解

function x= oridinarygauss(a,b)
n=length(b);
for j=1:n-1
    for i=j+1:n
        mult=a(i,j)/a(j,j);
        for k=j+1:n
            a(i,k)=a(i,k)-mult*a(j,k);
        end
        b(i)=b(i)-mult*b(j);
    end
end
x(n)=b(n)/a(n,n);
for i=n-1:-1:1
    for j=i+1:n
        b(i)=b(i)-a(i,j)*x(j);
    end
    x(i)=b(i)/a(i,i);
end
end

说明:输入参数a为系数矩阵,b为Ax=b的b值。

LU分解

function [L,U,x] = lureslove(a,b)
n=size(a);n=n(1);
L=eye(n);U=a;
for j=1:n-1
    for i=j+1:n
        mult=U(i,j)/U(j,j);
        L(i,j)=mult;
        for k=1:n
            U(i,k)=U(i,k)-mult*U(j,k);
        end
    end
end
c(1)=b(1);
for i=2:n
    for j=1:i-1
        b(i)=b(i)-L(i,j)*c(j);
    end
    c(i)=b(i);
end
x(n)=c(n)/U(n,n);
for i=n-1:-1:1
    for j=i+1:n
        c(i)=c(i)-U(i,j)*x(j);
    end
    x(i)=c(i)/U(i,i);
end
end

说明:输入参数a为系数矩阵,b为Ax=b的b值。

雅可比迭代

function [x,i] = yakebi(a,b,e,tol)
n=length(b);
D=diag(a);
D=spdiags(D,0,n,n);
r=a-D;i=0;
x=zeros(n,1);
while (norm((x-e),inf)>tol) 
    x=D\(b-r*x);
    i=i+1;
end
end

说明:输入参数a为系数矩阵,b为Ax=b的b值。e为初始估计解常取e=zeros(n,1);tol为求解控制精度(用无穷范数表示的前向误差)。

高斯-塞德尔方法

function x = gaussseidel(a,b,k)
n=length(b);
D=diag(a);
D=spdiags(D,0,n,n);
e=inv(D);
L=tril(a,-1);U=triu(a,1);
x=zeros(n,1);
for i=1:k
    for j=1:n
        x(j)=e(j,j)*(b(j)-U(j,:)*x-L(j,:)*x);
    end
end

说明:输入参数a为系数矩阵,b为Ax=b的b值。k为迭代次数。

连续过松弛(SOR)

function x = sor(a,b,w,k)
n=length(b);
D=diag(a);
D=spdiags(D,0,n,n);
e=inv(D);
L=tril(a,-1);U=triu(a,1);
x=zeros(n,1);
for i=1:k
    for j=1:n
        x(j)=(1-w)*x(j)+w*e(j,j)*(b(j)-U(j,:)*x-L(j,:)*x);
    end
end

说明:输入参数a为系数矩阵,b为Ax=b的b值。k为迭代次数。w为松弛参数。

参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:1024 设计师:我叫白小胖 返回首页

打赏作者

NCEPU-除尘

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值