1. Python及其开发环境
Python 是一门功能强大、易于学习、适合初学者和专业开发者使用的编程语言。随着人工智能、大数据、Web 开发等技术的发展,Python 已成为当今最受欢迎的编程语言之一。
1.1 Python 简介
Python 是一种解释型、面向对象、动态数据类型的高级程序设计语言。其设计哲学强调代码的可读性和简洁的语法,让开发者能用更少的代码实现更多的功能。Python 由 Guido van Rossum 于 1989 年发明,第一个公开版本于 1991 年发布。
Python 的主要特点包括:
- 简洁易读:语法简洁、结构清晰,非常适合初学者。
- 跨平台:可在 Windows、Linux、macOS 等主流系统上运行。
- 解释执行:不需要编译,直接运行脚本即可。
- 开源免费:遵循开源协议,任何人都可以自由使用和修改。
- 功能强大:拥有丰富的标准库和第三方库,覆盖 Web、数据处理、图像处理、机器学习等多个领域。
1.2 Python 的历史和发展
- 1989 年:Guido van Rossum 在圣诞节期间开始设计 Python。
- 1991 年:Python 0.9.0 发布,具备函数、异常、模块等基本特性。
- 2000 年:Python 2.0 发布,引入垃圾回收机制和 Unicode 支持。
- 2008 年:Python 3.0 发布,是对语言的一次重大升级,解决了许多历史遗留问题,但不向下兼容。
- 2010 年后:Python 社区不断壮大,成为数据科学、人工智能等领域的主流语言。
- 2020 年:Python 2 正式停止维护,Python 3 成为主流版本。
1.3 Python 的应用领域
Python 被广泛应用于各个行业和场景,包括但不限于:
- Web 开发:如 Django、Flask 等框架的支持,使开发网站变得高效。
- 数据分析与科学计算:如 NumPy、Pandas、Matplotlib、SciPy。
- 人工智能与机器学习:如 TensorFlow、PyTorch、scikit-learn。
- 自动化脚本与运维:大量用于自动化运维任务和系统管理。
- 桌面应用开发:如 PyQt、Tkinter。
- 网络爬虫:Scrapy、Requests 等库可快速抓取网站数据。
- 游戏开发与图形处理:如 Pygame、OpenCV。
- 教育教学:简洁的语法非常适合作为程序设计入门语言。
1.4 安装 Python 和设置开发环境
1.4.1 使用 Anaconda 安装 Python
在学习 Python 时,我们常常需要用到许多第三方库,如 numpy、pandas、matplotlib 等。Anaconda 是一个集成了 Python 解释器和大量科学计算库的开源发行版,适合初学者和科研人员使用。
安装步骤:
- 打开 Anaconda 官网:https://www.anaconda.com。
- 点击右上角的 “Download” 按钮,选择对应操作系统(Windows、macOS、Linux)版本。
- 下载推荐的 Python 3.x 版本(通常为最新的稳定版本)。
- 运行安装程序,并选择以下设置:
- “Just Me”(个人安装)或“All Users”(管理员安装)
- 勾选 “Add Anaconda to my PATH environment variable”
- 勾选 “Register Anaconda as my default Python”
- 安装完成后,可以打开 Anaconda Navigator(图形界面)或 Anaconda Prompt(命令行工具)开始使用。
验证是否安装成功:
- 打开 Anaconda Prompt,输入以下命令查看 Python 版本:
python --version
- 也可以输入:
conda --version
如果能正常显示版本号,说明安装成功。
Anaconda 的优势:
- 内置了数百个常用科学计算库,如 NumPy、Pandas、Scikit-learn、Jupyter 等。
- 提供图形化界面(Navigator)来管理环境与包。
- 支持创建虚拟环境,避免项目之间的依赖冲突。
- 与 Jupyter Notebook 配合良好,适合教学和数据分析。
1.4.2 安装开发工具(推荐 PyCharm)
学习 Python 除了安装解释器,还需要一个功能强大的开发工具(IDE,集成开发环境),方便代码编写、运行和调试。PyCharm 是由 JetBrains 公司开发的专业 Python IDE,界面友好、功能全面,特别适合初学者和开发者使用。
1. 安装 PyCharm
- 打开 PyCharm 官网:PyCharm: The only Python IDE you need
- 点击 “Download” 按钮,选择适合系统的版本下载安装。
- Professional 版:功能最全,适合 Web 开发(需要付费)
- Community 版(推荐):免费开源,适合一般学习和项目开发
- 安装过程只需根据提示操作,建议保持默认选项。
2. PyCharm 功能简介
- 代码补全与高亮:自动提示变量名、函数名,降低拼写错误率。
- 调试工具:可设置断点、逐行执行、查看变量值,便于错误排查。
- 项目管理:清晰管理项目结构和依赖包。
- 集成终端与版本控制:内置 Terminal、Git 工具,提高开发效率。
3. 其他常见开发环境(可选)
- VS Code:轻量级编辑器,适合希望灵活配置的用户。
- Jupyter Notebook:以网页形式书写代码和文档,适合数据分析与教学。
- Thonny:适合初学者,界面简洁、上手快,适合中小学或零基础学习者。
1.4.3 配置虚拟环境与包管理
在学习和开发 Python 项目时,推荐为每个项目创建独立的虚拟环境,以避免不同项目之间的库版本冲突。使用 Anaconda,我们可以通过命令行(终端)或图形界面(可视化工具)来方便地创建和管理虚拟环境。
一、方式一:终端方式(使用 Anaconda Prompt)
使用命令行可以更灵活、更专业地管理环境,推荐有一定基础的学习者使用。
1. 创建虚拟环境
conda create -n myenv python=3.10
- myenv 是环境名称,可以自定义。
- python=3.10 是指定的 Python 版本。
2. 激活虚拟环境
conda activate myenv
激活后,命令行前缀将出现 (myenv),表示已进入该环境。
3. 安装常用包
# 使用 conda 安装数据分析常用包
conda install numpy pandas matplotlib
# 使用 pip 安装第三方包
pip install requests
4. 查看已安装的包
conda list
5. 导出与导入环境(可选)
# 导出当前环境
conda env export > environment.yml
# 从文件导入环境
conda env create -f environment.yml
6. 删除或退出环境
conda deactivate # 退出当前环境
conda remove -n myenv --all # 删除环境
二、方式二:可视化方式(使用 Anaconda Navigator)
对于初学者来说,Anaconda Navigator 提供了图形界面,更直观易用。
1. 打开 Navigator
在开始菜单或桌面图标中启动 Anaconda Navigator。
2. 创建新环境
- 点击左侧菜单栏的 “Environments”
- 点击下方的 “Create”
- 在弹出窗口中填写:
- Name(名称):如 myenv
- Python 版本:如 3.10
- 点击 Create 按钮,等待环境创建完成。
3. 安装/卸载包
- 在 Environments 列表中选择目标环境。
- 在右侧面板选择 “Installed” / “Not installed” 切换可见包。
- 搜索需要的库(如 numpy、matplotlib),勾选后点击 “Apply” 即可安装或卸载。
4. 启动开发工具
在 Anaconda Navigator 主界面中,可以直接在指定环境下启动:
- Jupyter Notebook
- PyCharm(若已集成)
- VS Code
- Spyder 等
1.4.4 在 PyCharm 中设置 Python 解释器(中文版)
为了让 PyCharm 正确运行 Python 代码,必须为项目配置解释器。以下以使用 Anaconda 创建的虚拟环境 为例,讲解如何在 中文版 PyCharm 中设置解释器。
一、新建项目时设置解释器
- 打开 PyCharm,点击欢迎界面的 “新建项目”。
- 在左侧选择 “纯 Python”。
- 在右侧的 “Python 解释器” 一栏,点击下方的 “添加解释器...” 按钮。
- 在弹出的窗口中:
- 左侧选择 “Conda”
- 勾选 “现有环境”
- 点击右侧的 文件夹图标,浏览你的 Anaconda 虚拟环境中的 python.exe 文件路径,例如:
- D:\ProgramData\Anaconda3\envs\myenv\python.exe
- 选中后点击 “确定”,返回项目创建界面。
- 最后点击 “创建”,即可开始使用该解释器的新项目。
二、已有项目中修改解释器
如果项目已经创建,也可以随时更换解释器:
- 点击菜单栏:文件 → 设置(快捷键 Ctrl + Alt + S)。
- 在左侧导航栏中选择:项目:你的项目名 → Python 解释器
- 点击右侧的 “添加解释器...” 按钮。
- 在弹出的窗口中:
- 选择 Conda
- 勾选 “现有环境”
- 点击右侧的文件夹图标,定位到目标环境中的 python.exe
- 选择后点击 “确定”,返回设置界面,再点击 “应用” → “确定”。
三、确认解释器是否设置成功
你可以在项目中创建一个 Python 文件,并运行以下代码:
import sys
print(sys.executable)
如果输出的路径与设置的 Conda 虚拟环境一致,例如:
D:\ProgramData\Anaconda3\envs\myenv\python.exe
则说明解释器配置成功。