Python 基础教程(一):1. Python及其开发环境

1. Python及其开发环境

Python 是一门功能强大、易于学习、适合初学者和专业开发者使用的编程语言。随着人工智能、大数据、Web 开发等技术的发展,Python 已成为当今最受欢迎的编程语言之一。

1.1 Python 简介

Python 是一种解释型、面向对象、动态数据类型的高级程序设计语言。其设计哲学强调代码的可读性和简洁的语法,让开发者能用更少的代码实现更多的功能。Python 由 Guido van Rossum 于 1989 年发明,第一个公开版本于 1991 年发布。

Python 的主要特点包括:

  • 简洁易读:语法简洁、结构清晰,非常适合初学者。
  • 跨平台:可在 Windows、Linux、macOS 等主流系统上运行。
  • 解释执行:不需要编译,直接运行脚本即可。
  • 开源免费:遵循开源协议,任何人都可以自由使用和修改。
  • 功能强大:拥有丰富的标准库和第三方库,覆盖 Web、数据处理、图像处理、机器学习等多个领域。

1.2 Python 的历史和发展

  • 1989 年:Guido van Rossum 在圣诞节期间开始设计 Python。
  • 1991 年:Python 0.9.0 发布,具备函数、异常、模块等基本特性。
  • 2000 年:Python 2.0 发布,引入垃圾回收机制和 Unicode 支持。
  • 2008 年:Python 3.0 发布,是对语言的一次重大升级,解决了许多历史遗留问题,但不向下兼容。
  • 2010 年后:Python 社区不断壮大,成为数据科学、人工智能等领域的主流语言。
  • 2020 年:Python 2 正式停止维护,Python 3 成为主流版本。

1.3 Python 的应用领域

Python 被广泛应用于各个行业和场景,包括但不限于:

  • Web 开发:如 Django、Flask 等框架的支持,使开发网站变得高效。
  • 数据分析与科学计算:如 NumPy、Pandas、Matplotlib、SciPy。
  • 人工智能与机器学习:如 TensorFlow、PyTorch、scikit-learn。
  • 自动化脚本与运维:大量用于自动化运维任务和系统管理。
  • 桌面应用开发:如 PyQt、Tkinter。
  • 网络爬虫:Scrapy、Requests 等库可快速抓取网站数据。
  • 游戏开发与图形处理:如 Pygame、OpenCV。
  • 教育教学:简洁的语法非常适合作为程序设计入门语言。

1.4 安装 Python 和设置开发环境

1.4.1 使用 Anaconda 安装 Python

在学习 Python 时,我们常常需要用到许多第三方库,如 numpy、pandas、matplotlib 等。Anaconda 是一个集成了 Python 解释器和大量科学计算库的开源发行版,适合初学者和科研人员使用。

安装步骤:

  1. 打开 Anaconda 官网:https://www.anaconda.com
  2. 点击右上角的 “Download” 按钮,选择对应操作系统(Windows、macOS、Linux)版本。
  3. 下载推荐的 Python 3.x 版本(通常为最新的稳定版本)。
  4. 运行安装程序,并选择以下设置:
    • “Just Me”(个人安装)或“All Users”(管理员安装)
    • 勾选 “Add Anaconda to my PATH environment variable”
    • 勾选 “Register Anaconda as my default Python”
  5. 安装完成后,可以打开 Anaconda Navigator(图形界面)或 Anaconda Prompt(命令行工具)开始使用。

验证是否安装成功:

  • 打开 Anaconda Prompt,输入以下命令查看 Python 版本:

python --version

  • 也可以输入:

conda --version

如果能正常显示版本号,说明安装成功。

Anaconda 的优势:

  • 内置了数百个常用科学计算库,如 NumPy、Pandas、Scikit-learn、Jupyter 等。
  • 提供图形化界面(Navigator)来管理环境与包。
  • 支持创建虚拟环境,避免项目之间的依赖冲突。
  • 与 Jupyter Notebook 配合良好,适合教学和数据分析。

1.4.2 安装开发工具(推荐 PyCharm)

学习 Python 除了安装解释器,还需要一个功能强大的开发工具(IDE,集成开发环境),方便代码编写、运行和调试。PyCharm 是由 JetBrains 公司开发的专业 Python IDE,界面友好、功能全面,特别适合初学者和开发者使用。

1. 安装 PyCharm

  1. 打开 PyCharm 官网:PyCharm: The only Python IDE you need
  2. 点击 “Download” 按钮,选择适合系统的版本下载安装。
    • Professional 版:功能最全,适合 Web 开发(需要付费)
    • Community 版(推荐):免费开源,适合一般学习和项目开发
  3. 安装过程只需根据提示操作,建议保持默认选项。

2. PyCharm 功能简介

  • 代码补全与高亮:自动提示变量名、函数名,降低拼写错误率。
  • 调试工具:可设置断点、逐行执行、查看变量值,便于错误排查。
  • 项目管理:清晰管理项目结构和依赖包。
  • 集成终端与版本控制:内置 Terminal、Git 工具,提高开发效率。

3. 其他常见开发环境(可选)

  • VS Code:轻量级编辑器,适合希望灵活配置的用户。
  • Jupyter Notebook:以网页形式书写代码和文档,适合数据分析与教学。
  • Thonny:适合初学者,界面简洁、上手快,适合中小学或零基础学习者。

1.4.3 配置虚拟环境与包管理

在学习和开发 Python 项目时,推荐为每个项目创建独立的虚拟环境,以避免不同项目之间的库版本冲突。使用 Anaconda,我们可以通过命令行(终端)或图形界面(可视化工具)来方便地创建和管理虚拟环境。

一、方式一:终端方式(使用 Anaconda Prompt)

使用命令行可以更灵活、更专业地管理环境,推荐有一定基础的学习者使用。

1. 创建虚拟环境

conda create -n myenv python=3.10

  • myenv 是环境名称,可以自定义。
  • python=3.10 是指定的 Python 版本。

2. 激活虚拟环境

conda activate myenv

激活后,命令行前缀将出现 (myenv),表示已进入该环境。

3. 安装常用包

# 使用 conda 安装数据分析常用包

conda install numpy pandas matplotlib

# 使用 pip 安装第三方包

pip install requests

4. 查看已安装的包

conda list

5. 导出与导入环境(可选)

# 导出当前环境

conda env export > environment.yml

# 从文件导入环境

conda env create -f environment.yml

6. 删除或退出环境

conda deactivate         # 退出当前环境

conda remove -n myenv --all   # 删除环境

二、方式二:可视化方式(使用 Anaconda Navigator)

对于初学者来说,Anaconda Navigator 提供了图形界面,更直观易用。

1. 打开 Navigator

在开始菜单或桌面图标中启动 Anaconda Navigator

2. 创建新环境

  1. 点击左侧菜单栏的 “Environments”
  2. 点击下方的 “Create”
  3. 在弹出窗口中填写:
    • Name(名称):如 myenv
    • Python 版本:如 3.10
  4. 点击 Create 按钮,等待环境创建完成。

3. 安装/卸载包

  1. 在 Environments 列表中选择目标环境。
  2. 在右侧面板选择 “Installed” / “Not installed” 切换可见包。
  3. 搜索需要的库(如 numpy、matplotlib),勾选后点击 “Apply” 即可安装或卸载。

4. 启动开发工具

在 Anaconda Navigator 主界面中,可以直接在指定环境下启动:

  • Jupyter Notebook
  • PyCharm(若已集成)
  • VS Code
  • Spyder

1.4.4 在 PyCharm 中设置 Python 解释器(中文版)

为了让 PyCharm 正确运行 Python 代码,必须为项目配置解释器。以下以使用 Anaconda 创建的虚拟环境 为例,讲解如何在 中文版 PyCharm 中设置解释器。

一、新建项目时设置解释器
  1. 打开 PyCharm,点击欢迎界面的 “新建项目”
  2. 在左侧选择 “纯 Python”
  3. 在右侧的 “Python 解释器” 一栏,点击下方的 “添加解释器...” 按钮。
  4. 在弹出的窗口中:
    • 左侧选择 “Conda”
    • 勾选 “现有环境”
  5. 点击右侧的 文件夹图标,浏览你的 Anaconda 虚拟环境中的 python.exe 文件路径,例如:
  6. D:\ProgramData\Anaconda3\envs\myenv\python.exe
  7. 选中后点击 “确定”,返回项目创建界面。
  8. 最后点击 “创建”,即可开始使用该解释器的新项目。
二、已有项目中修改解释器

如果项目已经创建,也可以随时更换解释器:

  1. 点击菜单栏:文件 → 设置(快捷键 Ctrl + Alt + S)。
  2. 在左侧导航栏中选择:项目:你的项目名 → Python 解释器
  3. 点击右侧的 “添加解释器...” 按钮。
  4. 在弹出的窗口中:
    • 选择 Conda
    • 勾选 “现有环境”
    • 点击右侧的文件夹图标,定位到目标环境中的 python.exe
  5. 选择后点击 “确定”,返回设置界面,再点击 “应用” → “确定”
三、确认解释器是否设置成功

你可以在项目中创建一个 Python 文件,并运行以下代码:

import sys

print(sys.executable)

如果输出的路径与设置的 Conda 虚拟环境一致,例如:

D:\ProgramData\Anaconda3\envs\myenv\python.exe

则说明解释器配置成功。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值