多源异构数据集的分析及对比分析方法:Analysing and Comparing Heterogeneous

本文介绍了多源异构数据集分析的挑战与方法,包括数据预处理、关联规则挖掘、聚类分析。通过DataV工具,详细展示了用户反馈、订单和销售数据的清洗、转换、关联和聚类过程,揭示了不同数据集的关联性与差异性,为企业决策提供数据支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

在企业数据治理、业务流程优化等领域,面对复杂的多源异构数据集时,如何有效地进行数据分析与处理成为一个重要难题。本文将提出一种多源异构数据集的分析及对比分析的方法,并应用于实际场景中的一款开源数据集分析工具——DataV,阐述其优点、局限性和实用价值。同时,本文还将探讨相关的研究工作,包括但不限于知识发现、链接推断、数据关联、情感分析、风险评估、政策建议等方面的最新进展。最后,将总结经验教训,反思学习方法,展望未来的发展方向。

2.背景介绍

多源异构数据集:指的是企业不同部门、不同业务线、不同渠道的数据存在多个数据源,且各个数据源之间存在着千差万别的约定、规范、标准等。这些数据源可以来自不同的渠道(如互联网、移动设备、云端服务)、产生方式(如用户上传文件、传感器采集数据、API接口返回结果)、收集目标(如财务数据、用户反馈、运营统计等)。不同数据源之间往往存在数据冲突或不一致的问题,需要对数据进行集成、合并、补全、分析和挖掘,才能取得更加有意义的信息。

数据集分析是指对多源异构数据集进行分析、挖掘、清洗、整合、关联、分类、评估等处理过程,得到有用的信息,促使企业决策更好地做出决策。

当前,大部分企业都在采用多源异构数据集的分析模式,但由于数据的种类繁多、结

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值