计算:第一部分 计算的诞生 第 1 章 毕达哥拉斯的困惑 无理数的发现

本文介绍了无理数的概念,起源于毕达哥拉斯的困惑,通过Python代码实例展示了如何计算$sqrt{2}$,并讨论了无理数在计算机科学中的应用和计算挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.背景介绍

1.1 古代数学的发展

在古代,数学是一种神秘的知识,只有少数人才能掌握。在古希腊,毕达哥拉斯学派是最早研究数学的学派之一。他们认为,世界是由数字构成的,所有的事物都可以用数字来解释。

1.2 毕达哥拉斯的困惑

然而,毕达哥拉斯在研究过程中发现了一个问题,那就是无理数的存在。他发现,有些数无法用整数的比例来表示,这与他的世界观形成了冲突。

2.核心概念与联系

2.1 无理数的定义

无理数是不能表示为两个整数的比的实数。换句话说,无理数是不能表示为分数的数。

2.2 无理数与毕达哥拉斯定理的关系

毕达哥拉斯定理是一个关于直角三角形的定理,它的发现也是无理数被发现的原因之一。根据毕达哥拉斯定理,直角三角形的斜边的平方等于两直角边的平方和。当直角边的长度为1时,斜边的长度就是$\sqrt{2}$,这是一个无理数。

3.核心算法原理和具体操作步骤以及数学模型公式详细讲解

3.1 证明$\sqrt{2}$是无理数

我们可以通过反证法来证明$\sqrt{2}$是无

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值