1. 背景介绍
1.1 问题的由来
在人工智能领域,我们经常遇到一个问题,那就是如何让机器像人一样,不断地学习新的知识,而不会忘记旧的知识。这就是持续学习(Continual Learning)的问题。持续学习是一种模拟人类学习过程的机器学习方法,它的目标是让机器能够在学习新任务时,不会忘记旧任务的知识。
1.2 研究现状
尽管持续学习的概念已经提出很久,但是在实际应用中,我们还面临着很多挑战。例如,如何在不增加模型复杂度的情况下,实现持续学习?如何避免新任务的学习对旧任务知识的干扰?如何评估持续学习的效果?等等。
1.3 研究意义
持续学习的研究,对于推动人工智能的发展具有重要的意义。首先,持续学习可以帮助我们构建更加智能的机器,让机器能够像人一样,不断地学习新的知识,而不会忘记旧的知识。其次,持续学习也可以帮助我们理解人类的学习过程,从而推动认知科学的发展。
1.4 本文结构
本文首先介绍了持续学习的背景和研究现状,然后详细解释了持续学习的核心概念和联系,接着深入讲解了持续学习的核心算法原理和具体操作步骤,然后通过数学模型和公式,详细