1. 背景介绍
1.1 人工智能与深度学习的蓬勃发展
近年来,人工智能(AI)领域发展迅猛,尤其在深度学习方面取得了突破性进展。深度学习模型在图像识别、自然语言处理、语音识别等领域取得了显著成果,甚至超越了人类水平。然而,深度学习模型通常需要大量数据进行训练,并且在面对未见过的数据时,泛化能力往往不足。
1.2 LLM:大型语言模型的崛起
大型语言模型(LLM)是深度学习模型的一种,它拥有庞大的参数量和复杂的网络结构,能够处理复杂的语言任务。例如,GPT-3、BERT、LaMDA等LLM在文本生成、机器翻译、问答系统等方面展现出惊人的能力。
1.3 元学习:赋予模型学习如何学习的能力
元学习(Meta Learning)是一种学习如何学习的方法,它旨在让模型能够从少量数据中快速学习新的任务,并具备良好的泛化能力。元学习可以被视为一种更高层次的学习,它关注的是模型的学习过程本身,而非具体的任务。
2. 核心概念与联系
2.1 LLM的泛化能力挑战
LLM虽然在特定任务上表现出色,