智能投资组合多周期再平衡策略

智能投资组合多周期再平衡策略

关键词:智能投资组合、多周期再平衡、资产配置、风险控制、投资策略

摘要:本文深入探讨了智能投资组合多周期再平衡策略。首先介绍了该策略的背景,包括目的、预期读者等内容。接着阐述了核心概念,通过示意图和流程图展示其架构。详细讲解了核心算法原理,并用 Python 代码进行说明,同时给出了相关数学模型和公式。在项目实战部分,介绍了开发环境搭建、源代码实现及解读。还探讨了该策略的实际应用场景,推荐了学习资源、开发工具和相关论文著作。最后总结了未来发展趋势与挑战,并提供了常见问题解答和参考资料,旨在为投资者和相关研究人员提供全面深入的技术分析和实践指导。

1. 背景介绍

1.1 目的和范围

智能投资组合多周期再平衡策略的目的在于优化投资组合的表现,通过定期或不定期地调整资产配置,使投资组合始终保持在预先设定的风险 - 收益水平上。该策略的范围涵盖了各种金融资产,如股票、债券、基金等,适用于不同规模和风险偏好的投资者。通过多周期的再平衡,可以在长期投资过程中更好地适应市场变化,降低风险并提高收益的稳定性。

1.2 预期读者

本文预期读者包括专业的金融投资者、投资顾问、量化分析师、金融科技从业者以及对智能投资组合感兴趣的研究人员和学生。对于专业投资者,本文可以提供一种新的投资策略思路和技术实现方法;对于研究人员和学生,有助于他们深入了解智能投资组合的理论和实践。

1.3 文档结构概述

本文将按照以下结构进行阐述:首先介绍核心概念与联系,通过文本示意图和 Mermaid 流程图展示智能投资组合多周期再平衡策略的架构;接着详细讲解核心算法原理,并使用 Python 源代码进行说明;然后给出相关的数学模型和公式,并举例说明;在项目实战部分,介绍开发环境搭建、源代码详细实现和代码解读;之后探讨该策略的实际应用场景;再推荐相关的工具和资源,包括学习资源、开发工具框架和论文著作;最后总结未来发展趋势与挑战,提供常见问题解答和参考资料。

1.4 术语表

1.4.1 核心术语定义
  • 智能投资组合:利用先进的数据分析和算法技术,根据投资者的风险偏好、投资目标等因素,自动构建和优化的投资组合。
  • 多周期再平衡:在不同的时间周期(如日、周、月等)对投资组合进行调整,使资产配置比例恢复到目标比例。
  • 资产配置:将资金分配到不同类型的资产上,以实现风险分散和收益最大化的过程。
  • 风险控制:通过各种手段降低投资组合面临的风险,如市场风险、信用风险等。
1.4.2 相关概念解释
  • 有效前沿:在给定风险水平下,能够提供最高预期收益的投资组合的集合。智能投资组合的构建通常会参考有效前沿来确定最优的资产配置。
  • 夏普比率:衡量投资组合每承担一单位总风险所能获得的超过无风险收益的额外收益。夏普比率越高,说明投资组合的绩效越好。
1.4.3 缩略词列表
  • ETF:交易型开放式指数基金(Exchange - Traded Fund)
  • VAR:风险价值(Value at Risk),用于衡量在一定置信水平下,投资组合在未来特定时间段内可能遭受的最大损失。

2. 核心概念与联系

核心概念原理

智能投资组合多周期再平衡策略的核心原理是基于资产配置理论和市场动态变化。投资者首先根据自己的风险偏好和投资目标确定一个目标资产配置比例,例如股票占 60%,债券占 40%。随着市场的波动,各资产的价值会发生变化,导致实际资产配置比例偏离目标比例。多周期再平衡就是在不同的时间间隔对投资组合进行调整,将资产配置比例重新调整回目标比例。

例如,假设初始投资 100 万元,股票投资 60 万元,债券投资 40 万元。一段时间后,由于股票市场上涨,股票价值变为 70 万元,债券价值变为 42 万元,此时股票占比变为 70 / (70 + 42) ≈ 62.5%,债券占比变为 42 / (70 + 42) ≈ 37.5%,偏离了目标比例。通过再平衡,卖出部分股票,买入部分债券,使股票和债券的比例重新回到 60%和 40%。

架构的文本示意图

投资者需求(风险偏好、投资目标)
    |
    v
资产配置模型(确定目标资产配置比例)
    |
    v
初始投资组合构建
    |
    v
市场数据监测(资产价格、收益率等)
    |
    v
多周期判断(日、周、月等)
    |       |
    v       v
偏离判断(实际比例与目标比例对比)
    |
    v
再平衡决策(买入/卖出资产)
    |
    v
投资组合调整
    |
    v
持续监测与循环

Mermaid 流程图

投资者需求
资产配置模型
初始投资组合构建
市场数据监测
多周期判断
偏离判断
再平衡决策
投资组合调整

3. 核心算法原理 & 具体操作步骤

核心算法原理

智能投资组合多周期再平衡策略的核心算法主要包括以下几个步骤:

  1. 目标资产配置确定:根据投资者的风险偏好和投资目标,使用现代投资组合理论(如均值 - 方差模型)确定目标资产配置比例。
  2. 市场数据收集与处理:定期收集各资产的价格、收益率等数据,并进行清洗和预处理。
  3. 多周期判断:根据设定的周期(如日、周、月),判断是否到达再平衡时间点。
  4. 偏离计算:计算当前投资组合中各资产的实际比例与目标比例的偏离程度。
  5. 再平衡决策:根据偏离程度和交易成本等因素,决定是否进行再平衡以及买入/卖出的资产数量。

具体操作步骤及 Python 代码实现

import pandas as pd
import numpy as np

# 步骤 1:目标资产配置确定
# 假设目标资产配置比例:股票 60%,债券 40%
target_allocation = {
    'stock': 0.6,
    'bond': 0.4
}

# 步骤 2:市场数据收集与处理
# 模拟市场数据,假设我们有 10 天的股票和债券价格数据
stock_prices = pd.Series([100, 102, 105, 103, 106, 108, 110, 109, 112, 115])
bond_prices = pd.Series([100, 101, 100, 102, 103, 102, 104, 105, 106, 107])

# 初始投资金额
initial_investment = 100000

# 初始资产分配
initial_stock_investment = initial_investment * target_allocation['stock']
initial_bond_investment = initial_investment * target_allocation['bond']

# 初始资产数量
initial_stock_quantity = initial_stock_investment / stock_prices[0]
initial_bond_quantity = initial_bond_investment / bond_prices[0]

# 步骤 3:多周期判断
# 假设按周进行再平衡,每周有 5 个交易日
rebalance_period = 5

# 步骤 4:偏离计算和再平衡决策
for i in range(0, len(stock_prices), rebalance_period):
    if i + rebalance_period > len(stock_prices):
        break
    
    # 当前股票和债券的价值
    current_stock_value = initial_stock_quantity * stock_prices[i + rebalance_period - 1]
    current_bond_value = initial_bond_quantity * bond_prices[i + rebalance_period - 1]
    
    # 当前资产总价值
    current_total_value = current_stock_value + current_bond_value
    
    # 当前资产配置比例
    current_stock_allocation = current_stock_value / current_total_value
    current_bond_allocation = current_bond_value / current_total_value
    
    # 计算偏离程度
    stock_deviation = current_stock_allocation - target_allocation['stock']
    bond_deviation = current_bond_allocation - target_allocation['bond']
    
    # 再平衡决策
    if abs(stock_deviation) > 0.05 or abs(bond_deviation) > 0.05:  # 假设偏离超过 5% 进行再平衡
        # 计算需要调整的金额
        target_stock_value = current_total_value * target_allocation['stock']
        target_bond_value = current_total_value * target_allocation['bond']
        
        adjust_stock_amount = target_stock_value - current_stock_value
        adjust_bond_amount = target_bond_value - current_bond_value
        
        # 计算需要调整的资产数量
        adjust_stock_quantity = adjust_stock_amount / stock_prices[i + rebalance_period - 1]
        adjust_bond_quantity = adjust_bond_amount / bond_prices[i + rebalance_period - 1]
        
        # 更新资产数量
        initial_stock_quantity += adjust_stock_quantity
        initial_bond_quantity += adjust_bond_quantity
        
        print(f"第 {i + rebalance_period} 天进行再平衡:")
        print(f"卖出/买入股票数量:{adjust_stock_quantity}")
        print(f"卖出/买入债券数量:{adjust_bond_quantity}")

4. 数学模型和公式 & 详细讲解 & 举例说明

均值 - 方差模型

均值 - 方差模型是现代投资组合理论的核心模型,用于确定最优的资产配置。该模型的目标是在给定预期收益的情况下,最小化投资组合的风险(方差);或者在给定风险水平下,最大化投资组合的预期收益。

设投资组合中有 n n n 种资产, w i w_i wi 表示第 i i i 种资产的权重,且 ∑ i = 1 n w i = 1 \sum_{i = 1}^{n} w_i = 1 i=1nwi=1 R i R_i Ri 表示第 i i i 种资产的预期收益率, μ p \mu_p μp 表示投资组合的预期收益率, σ p 2 \sigma_p^2 σp2 表示投资组合的方差。

投资组合的预期收益率公式为:
μ p = ∑ i = 1 n w i R i \mu_p=\sum_{i = 1}^{n} w_i R_i μp=i=1nwiRi

投资组合的方差公式为:
σ p 2 = ∑ i = 1 n ∑ j = 1 n w i w j σ i j \sigma_p^2=\sum_{i = 1}^{n}\sum_{j = 1}^{n} w_i w_j \sigma_{ij} σp2=i=1nj=1nwiwjσij
其中, σ i j \sigma_{ij} σij 是资产 i i i 和资产 j j j 的协方差。

举例说明

假设有两种资产,股票(S)和债券(B),预期收益率分别为 R S = 0.1 R_S = 0.1 RS=0.1 R B = 0.05 R_B = 0.05 RB=0.05,协方差矩阵为:
[ σ S 2 σ S B σ B S σ B 2 ] = [ 0.04 0.01 0.01 0.01 ] \begin{bmatrix} \sigma_S^2 & \sigma_{SB} \\ \sigma_{BS} & \sigma_B^2 \end{bmatrix}= \begin{bmatrix} 0.04 & 0.01 \\ 0.01 & 0.01 \end{bmatrix} [σS2σBSσSBσB2]=[0.040.010.010.01]

设股票的权重为 w S w_S wS,债券的权重为 w B = 1 − w S w_B = 1 - w_S wB=1wS

投资组合的预期收益率为:
μ p = w S R S + w B R B = w S × 0.1 + ( 1 − w S ) × 0.05 = 0.05 + 0.05 w S \mu_p = w_S R_S+w_B R_B=w_S\times0.1+(1 - w_S)\times0.05 = 0.05 + 0.05w_S μp=wSRS+wBRB=wS×0.1+(1wS)×0.05=0.05+0.05wS

如果我们希望在预期收益率为 0.08 的情况下最小化方差,可以通过以下步骤求解:
μ p = 0.05 + 0.05 w S = 0.08 \mu_p = 0.05 + 0.05w_S = 0.08 μp=0.05+0.05wS=0.08,解得 w S = 0.6 w_S = 0.6 wS=0.6 w B = 1 − 0.6 = 0.4 w_B = 1 - 0.6 = 0.4 wB=10.6=0.4

此时投资组合的方差为:
σ p 2 = 0.03 × 0. 6 2 + 0.01 = 0.03 × 0.36 + 0.01 = 0.0108 + 0.01 = 0.0208 \sigma_p^2=0.03\times0.6^2+0.01 = 0.03\times0.36 + 0.01 = 0.0108 + 0.01 = 0.0208 σp2=0.03×0.62+0.01=0.03×0.36+0.01=0.0108+0.01=0.0208

风险价值(VAR)计算

风险价值(VAR)是一种常用的风险度量指标,用于衡量在一定置信水平下,投资组合在未来特定时间段内可能遭受的最大损失。

设投资组合的收益率为 R p R_p Rp,其概率密度函数为 f ( R p ) f(R_p) f(Rp),置信水平为 c c c,则 VAR 可以通过以下公式计算:
P ( R p ≤ − V A R ) = 1 − c P(R_p\leq -VAR)=1 - c P(RpVAR)=1c

例如,假设投资组合的收益率服从正态分布 N ( μ p , σ p 2 ) N(\mu_p,\sigma_p^2) N(μp,σp2),置信水平为 95%,则 V A R = μ p − 1.645 σ p VAR = \mu_p - 1.645\sigma_p VAR=μp1.645σp

5. 项目实战:代码实际案例和详细解释说明

5.1 开发环境搭建

为了实现智能投资组合多周期再平衡策略,我们需要搭建以下开发环境:

  1. Python 环境:建议使用 Python 3.7 及以上版本。可以从 Python 官方网站(https://www.python.org/downloads/)下载并安装。
  2. 必要的库
    • pandas:用于数据处理和分析。可以使用 pip install pandas 进行安装。
    • numpy:用于数值计算。可以使用 pip install numpy 进行安装。
    • matplotlib:用于数据可视化。可以使用 pip install matplotlib 进行安装。

5.2 源代码详细实现和代码解读

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 步骤 1:目标资产配置确定
target_allocation = {
    'stock': 0.6,
    'bond': 0.4
}

# 步骤 2:市场数据收集与处理
# 模拟市场数据,假设我们有 252 个交易日的股票和债券价格数据
np.random.seed(0)
stock_returns = np.random.normal(0.001, 0.01, 252)
bond_returns = np.random.normal(0.0005, 0.005, 252)

stock_prices = pd.Series([100] + list(np.cumprod(1 + stock_returns)))
bond_prices = pd.Series([100] + list(np.cumprod(1 + bond_returns)))

# 初始投资金额
initial_investment = 100000

# 初始资产分配
initial_stock_investment = initial_investment * target_allocation['stock']
initial_bond_investment = initial_investment * target_allocation['bond']

# 初始资产数量
initial_stock_quantity = initial_stock_investment / stock_prices[0]
initial_bond_quantity = initial_bond_investment / bond_prices[0]

# 步骤 3:多周期判断
# 假设按季度进行再平衡,每个季度约 63 个交易日
rebalance_period = 63

# 记录每个时间点的投资组合价值
portfolio_values = []

# 步骤 4:偏离计算和再平衡决策
for i in range(0, len(stock_prices), rebalance_period):
    if i + rebalance_period > len(stock_prices):
        break
    
    # 当前股票和债券的价值
    current_stock_value = initial_stock_quantity * stock_prices[i + rebalance_period - 1]
    current_bond_value = initial_bond_quantity * bond_prices[i + rebalance_period - 1]
    
    # 当前资产总价值
    current_total_value = current_stock_value + current_bond_value
    portfolio_values.append(current_total_value)
    
    # 当前资产配置比例
    current_stock_allocation = current_stock_value / current_total_value
    current_bond_allocation = current_bond_value / current_total_value
    
    # 计算偏离程度
    stock_deviation = current_stock_allocation - target_allocation['stock']
    bond_deviation = current_bond_allocation - target_allocation['bond']
    
    # 再平衡决策
    if abs(stock_deviation) > 0.05 or abs(bond_deviation) > 0.05:  # 假设偏离超过 5% 进行再平衡
        # 计算需要调整的金额
        target_stock_value = current_total_value * target_allocation['stock']
        target_bond_value = current_total_value * target_allocation['bond']
        
        adjust_stock_amount = target_stock_value - current_stock_value
        adjust_bond_amount = target_bond_value - current_bond_value
        
        # 计算需要调整的资产数量
        adjust_stock_quantity = adjust_stock_amount / stock_prices[i + rebalance_period - 1]
        adjust_bond_quantity = adjust_bond_amount / bond_prices[i + rebalance_period - 1]
        
        # 更新资产数量
        initial_stock_quantity += adjust_stock_quantity
        initial_bond_quantity += adjust_bond_quantity
        
        print(f"第 {i + rebalance_period} 天进行再平衡:")
        print(f"卖出/买入股票数量:{adjust_stock_quantity}")
        print(f"卖出/买入债券数量:{adjust_bond_quantity}")

# 绘制投资组合价值变化曲线
plt.plot(range(0, len(portfolio_values) * rebalance_period, rebalance_period), portfolio_values)
plt.xlabel('交易日')
plt.ylabel('投资组合价值')
plt.title('智能投资组合多周期再平衡策略')
plt.show()

代码解读与分析

  1. 目标资产配置确定:通过字典 target_allocation 确定股票和债券的目标配置比例。
  2. 市场数据收集与处理:使用 numpy 生成模拟的股票和债券收益率数据,然后通过 pandas 计算累积价格。
  3. 多周期判断:设置 rebalance_period 为 63 天,表示按季度进行再平衡。
  4. 偏离计算和再平衡决策:在每个再平衡周期结束时,计算当前资产配置比例与目标比例的偏离程度。如果偏离超过 5%,则进行再平衡,调整资产数量。
  5. 数据可视化:使用 matplotlib 绘制投资组合价值随时间的变化曲线,直观展示策略的效果。

6. 实际应用场景

个人投资者

对于个人投资者,智能投资组合多周期再平衡策略可以帮助他们实现长期的资产增值和风险控制。个人投资者可以根据自己的风险承受能力和投资目标,确定合适的资产配置比例,然后通过定期再平衡,确保投资组合始终符合自己的预期。例如,一位年轻的投资者可能更倾向于股票投资以获取较高的收益,但随着年龄的增长,他可以逐渐增加债券的比例,通过再平衡策略实现资产配置的动态调整。

机构投资者

机构投资者,如基金公司、保险公司等,管理着大量的资金,需要在保证收益的同时控制风险。智能投资组合多周期再平衡策略可以帮助他们优化资产配置,提高投资效率。基金公司可以根据不同的基金类型和投资策略,确定目标资产配置,并通过再平衡策略及时调整投资组合,以适应市场变化。保险公司可以利用该策略管理其保险资金,确保资金的安全性和稳定性。

量化投资公司

量化投资公司依靠先进的算法和数据分析技术进行投资决策。智能投资组合多周期再平衡策略是量化投资中的重要组成部分。量化投资公司可以利用大量的历史数据和实时市场数据,通过优化算法确定最优的资产配置和再平衡策略。他们还可以结合其他量化策略,如动量策略、价值策略等,进一步提高投资组合的绩效。

7. 工具和资源推荐

7.1 学习资源推荐

7.1.1 书籍推荐
  • 《漫步华尔街》(A Random Walk Down Wall Street):本书介绍了投资的基本原理和各种投资策略,包括资产配置和市场有效性等内容,适合初学者入门。
  • 《聪明的投资者》(The Intelligent Investor):本杰明·格雷厄姆的经典著作,强调了价值投资和风险控制的重要性,对投资组合的构建和管理有深刻的见解。
  • 《投资组合理论与资本市场》(Portfolio Theory and Capital Markets):威廉·夏普的著作,系统地阐述了现代投资组合理论,包括均值 - 方差模型、资本资产定价模型等。
7.1.2 在线课程
  • Coursera 上的“投资学原理”(Principles of Investments)课程:由知名高校教授授课,涵盖了投资组合理论、资产定价、风险管理等内容。
  • edX 上的“量化投资策略”(Quantitative Investment Strategies)课程:介绍了量化投资的基本概念和方法,包括智能投资组合的构建和优化。
7.1.3 技术博客和网站
  • 雪球(https://xueqiu.com/):国内知名的投资社区,提供了丰富的投资资讯、研究报告和投资者交流平台。
  • Seeking Alpha(https://seekingalpha.com/):国外的投资研究网站,有大量的专业分析师撰写的投资分析文章。

7.2 开发工具框架推荐

7.2.1 IDE和编辑器
  • PyCharm:功能强大的 Python 集成开发环境,提供了代码编辑、调试、版本控制等功能,适合开发大型的 Python 项目。
  • Jupyter Notebook:交互式的开发环境,适合进行数据探索、模型验证和代码演示,方便与他人分享代码和结果。
7.2.2 调试和性能分析工具
  • pdb:Python 内置的调试器,可以帮助开发者定位代码中的问题。
  • cProfile:Python 标准库中的性能分析工具,可以分析代码的运行时间和函数调用次数,帮助优化代码性能。
7.2.3 相关框架和库
  • Zipline:一个开源的 Python 量化交易平台,提供了回测和实盘交易的功能,方便开发者实现和测试投资策略。
  • PyPortfolioOpt:用于投资组合优化的 Python 库,实现了多种投资组合优化算法,如均值 - 方差优化、风险平价等。

7.3 相关论文著作推荐

7.3.1 经典论文
  • Harry Markowitz 的《Portfolio Selection》:提出了均值 - 方差模型,奠定了现代投资组合理论的基础。
  • William Sharpe 的《Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk》:提出了资本资产定价模型(CAPM),用于解释资产的预期收益率与风险之间的关系。
7.3.2 最新研究成果
  • 关注顶级金融学术期刊,如《Journal of Finance》、《Review of Financial Studies》等,这些期刊上发表了许多关于投资组合理论和策略的最新研究成果。
  • 参加金融学术会议,如美国金融协会(AFA)年会、西部金融协会(WFA)年会等,了解最新的研究动态和前沿技术。
7.3.3 应用案例分析
  • 一些金融科技公司和量化投资机构会发布他们的投资策略和应用案例,如 Renaissance Technologies 的量化投资策略,这些案例可以为我们提供实际应用的参考。

8. 总结:未来发展趋势与挑战

未来发展趋势

  1. 智能化和自动化程度提高:随着人工智能和机器学习技术的不断发展,智能投资组合多周期再平衡策略将更加智能化和自动化。可以利用深度学习算法对市场数据进行更深入的分析和预测,自动调整资产配置和再平衡策略。
  2. 多元化资产配置:未来的投资组合将不仅仅局限于股票和债券,还会包括更多种类的资产,如大宗商品、房地产、数字货币等。通过多元化的资产配置,可以进一步降低风险,提高收益的稳定性。
  3. 个性化服务:根据投资者的不同需求和风险偏好,提供更加个性化的投资组合和再平衡策略。利用大数据和人工智能技术,深入了解投资者的特征和行为,为其量身定制投资方案。

挑战

  1. 市场不确定性:金融市场充满了不确定性,各种宏观经济因素、政策变化、突发事件等都会对市场产生影响。如何在不确定的市场环境中准确地预测资产价格走势,制定合理的再平衡策略,是一个巨大的挑战。
  2. 数据质量和隐私问题:智能投资组合策略依赖于大量的市场数据和投资者数据,数据的质量和准确性直接影响策略的效果。同时,数据隐私和安全问题也需要得到重视,如何在保护投资者隐私的前提下,充分利用数据进行投资决策,是需要解决的问题。
  3. 交易成本和流动性问题:再平衡过程中会涉及到资产的买卖交易,交易成本会对投资收益产生影响。此外,一些资产的流动性较差,可能会导致再平衡无法及时进行,影响策略的执行效果。

9. 附录:常见问题与解答

问题 1:多周期再平衡的周期应该如何选择?

解答:多周期再平衡的周期选择需要综合考虑多个因素。较短的周期(如日、周)可以更及时地调整资产配置,适应市场变化,但会增加交易成本;较长的周期(如月、季)可以减少交易成本,但可能会错过一些市场机会。一般来说,可以根据投资者的投资目标、风险偏好和市场波动情况来选择合适的周期。例如,对于风险偏好较高、追求短期收益的投资者,可以选择较短的周期;对于风险偏好较低、注重长期稳定收益的投资者,可以选择较长的周期。

问题 2:再平衡的触发条件除了偏离比例外,还有其他的吗?

解答:除了资产配置比例偏离目标比例外,还可以设置其他的触发条件。例如,可以根据市场波动率的变化来触发再平衡,如果市场波动率超过一定阈值,则进行再平衡;也可以根据资产的估值情况来触发,当某些资产的估值过高或过低时,进行调整。此外,还可以结合宏观经济指标、政策变化等因素来综合判断是否需要进行再平衡。

问题 3:如何处理再平衡过程中的交易成本?

解答:交易成本是再平衡过程中需要考虑的重要因素。可以采取以下方法来处理交易成本:一是优化再平衡策略,设置合理的偏离阈值,避免过度交易;二是选择交易成本较低的交易渠道和方式,如通过网上交易平台进行交易;三是在再平衡决策中考虑交易成本的影响,计算扣除交易成本后的实际收益,选择最优的再平衡方案。

10. 扩展阅读 & 参考资料

  1. Markowitz, H. M. (1952). Portfolio Selection. The Journal of Finance, 7(1), 77 - 91.
  2. Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk. The Journal of Finance, 19(3), 425 - 442.
  3. Bodie, Z., Kane, A., & Marcus, A. J. (2017). Investments. McGraw - Hill Education.
  4. https://www.investopedia.com/
  5. https://www.quantopian.com/

作者:AI天才研究院/AI Genius Institute & 禅与计算机程序设计艺术 /Zen And The Art of Computer Programming

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值