前言,最近几天小伞君在配置基于GPU驱动的深度/机器学习框架,深深体会到了英伟达硬件帝国的绝对统治力度,终于,凭借实验室的电脑,小伞君终于享受了一回有显卡的感觉,这里给大家总结一下整体的配置之路!
PS:实验室的电脑,为了不弄坏(重装),安装的每一步都相当小心,所以间接学了不少东西,马上就给大家分享欧!
\1. 从基本的pytorch配置说起......
什么?pytorch需要配置GPU吗?这不是安装下来就能用?
是这样的没错,现在PaddlePaddle也同样支持这样做了,理由是这两都自带了CUDA与CuDNN,只要本地有GPU,直接解决全部问题!
但是Tensorflow呢?
这年头有谁还用TF呀?
抛开这个不说,即便深度学习无需配置CUDA这些麻烦事,机器学习也一样要配置CUDA和一些其他的组件,以达到更快的加速效果。
小伞你雨淋多了???
机器学习用GPU???
没错,机器学习就是可以用GPU!!!
(不得不佩服Nivdia大爹的统治力,直接把隔壁AMD的ROCm(AMD的深度学习加速框架)给干碎了,AMD才刚刚能兼容TF呢,隔壁英伟达已经联动机器学习搞了一堆框架,这回彻底赣爆了AMD,奠定了英伟达在显卡加速领域的领主地位。)
(这年头谁用ROCm搞深度学习呀?)
英伟达的产品——Rapids,下属3个库:CUML,CUGRAPH,CUDF,从机器学习,图机器学习/深度学习,类pandas数据加载三个领域,直接降维打击,隔壁用CPU的跑一天,GPU加速可能几小时就把参数调好了。
因此,安装CUDA,CUDNN,以及Rapids,箭在弦上,不得不发!
\2. 但是CUDA,CUDNN不是pytorch帮你all OK了?
第一:pip安装的东西,各位一般不会