这个是公共子序列(本次题目的链接在这里),子序列中的重复字母可以不连续。上一个文章是求最长公共子串的长度(最长公共子串的链接在这里),子串要求必须是连续的。
注意
- 最长公共子串的时候,取出公共部分的首尾下标即可,但是本次的下标是离散分布的,只能用stringbuffer去存储。这里采用回溯的方式(应该是属于回溯的思想)去找回字符串。
- 注意边界。i和j 是从1开始的。
状态转移方程的推导过程大概如下:
状态转移方程如下:
代码如下
import java.util.*;
public class Solution {
/**
* longest common subsequence
* @param s1 string字符串 the string
* @param s2 string字符串 the string
* @return string字符串
*/
public String LCS (String s1, String s2) {
// write code here
if(s1.length() == 0 || s2.length() == 0){
return "-1";
}
int[][] lcs = new int[s1.length() + 1][s2.length() + 1];
// 将dp公式转化成代码
for(int i = 1; i <= s1.length(); ++i){
for(int j = 1; j <= s2.length(); ++j){
if(s1.charAt(i - 1) == s2.charAt(j - 1)){
lcs[i][j] = lcs[i - 1][j - 1] + 1;
}else{
lcs[i][j] = Math.max(lcs[i - 1][j], lcs[i][j - 1]);
}
}
}
// 根据前面的条件找回去
StringBuilder sb = new StringBuilder();
int l1 = s1.length();
int l2 = s2.length();
while(l1 != 0 && l2 != 0){
if(s1.charAt(l1 - 1) == s2.charAt(l2 - 1)){
sb.append(s1.charAt(l1 - 1));
--l1;
--l2;
}else{
if(lcs[l1 - 1][l2] > lcs[l1][l2 - 1]){
--l1;
}else{
--l2;
}
}
}
if(sb.length() == 0){
return "-1";
}
return sb.reverse().toString();
}
}