2013这一年

• 时间管理。
     13年学习了一个番茄时间管理法,以后在工作中应该尽量多用起来。
    总是觉得时间不够用,看下有多少时间是花在意义不大的事情上面,比如浏览休闲网页,看电视剧等。
• 调整心态,掌握情绪
    好几次了,因为情绪不好导致一天效率都很低。要及时调整好自己的情绪,把握好心态。
• 技术
     一句话总结,技术成长的太慢太慢了。关键原因,书还是看的少。这点必须要马上改进了,以后的时间会越来越少的。做的计划很多都没有实现,很郁闷。
     近几天把要看的书整理一下,边看边做实验,做笔记。学到了不会忘记才是真正学会的!暂时想到的:
    1、算法导论(结合MIT的公开课);
    2、深入理解操作系统;
    3、Effective c++/stl
    4、Windows核心编程;
    5、Windows程序设计(图形)
     6、网络
     7、程序员的自我修养

    还有就是看下投资知识。争取完成投资书4到5本吧。开始买点投资产品。

    然后就是英语了,平时继续看下美剧,认真把绝望的主妇看几遍,还有born to win达到背诵。
• 生活

     2013年去了一趟泸沽湖和丽江,终于迈出了第一步了,以后争取每年出去看看。The world is a book and those who don't travel read only a page.

    新一年要开始锻炼了,保持健康。

    兴趣:集中在羽毛球和摄影上面,争取有长足的进步。

• 提高的事

    应该是心态吧。稍微那么成熟一点了。

• 满意的事

   呃,薪水总算多了一点点,达到某司应届生水平了。

• 自豪的事

   暂时没想到,唉~

• 期待的事
    希望来年有个baby,有个小房子。


    暂时就这么多吧~~



深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值