KNN算法:机器学习中最直观的分类方法

1151 篇文章 ¥299.90 ¥399.90
本文介绍了KNN算法的基本概念、实现方法和优缺点。KNN是一种无参监督学习算法,通过距离度量找最近邻居进行分类。在Python中,使用sklearn库实现KNN并用鸢尾花数据集示例。尽管KNN易受噪声干扰且对高维数据处理效率低,但其简单性和实用性使其在实际应用中仍占有一席之地。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

KNN算法:机器学习中最直观的分类方法

KNN(K-Nearest Neighbor)算法是一种基本的分类和回归算法,经常被用于机器学习领域。它的工作原理很简单:将新数据点与已知数据点进行比较,找出最接近它的 K 个邻居,并将新数据点分类为邻居中出现最多的类别。在这篇文章中,我们将介绍KNN算法的基本概念、实现方法和优缺点。

1. KNN算法基本概念

KNN算法是一种无参考的监督学习算法,通过特征空间中的距离度量来判定测试样本与训练样本之间的距离远近,从而求得测试样本的“最近邻居”。该算法是基于实例的,即通过使用一些已知的类别标记的训练样本建立一个模型,并对新的实例进行分类。

KNN算法的三个主要要素是:距离度量、K值的选择和分类决策规则。距离度量可以采用欧几里得距离、曼哈顿距离等方式,而K值的选取需要根据具体问题进行选择。分类决策规则通常采用多数表决,即选择K个邻居中出现最多的类别作为新数据点的分类。

2. KNN算法实现方法

现在,我们来看一下如何使用Python实现KNN算法。以下是一个简单的示例:

import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_spli
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值