KNN算法:机器学习中最直观的分类方法
KNN(K-Nearest Neighbor)算法是一种基本的分类和回归算法,经常被用于机器学习领域。它的工作原理很简单:将新数据点与已知数据点进行比较,找出最接近它的 K 个邻居,并将新数据点分类为邻居中出现最多的类别。在这篇文章中,我们将介绍KNN算法的基本概念、实现方法和优缺点。
1. KNN算法基本概念
KNN算法是一种无参考的监督学习算法,通过特征空间中的距离度量来判定测试样本与训练样本之间的距离远近,从而求得测试样本的“最近邻居”。该算法是基于实例的,即通过使用一些已知的类别标记的训练样本建立一个模型,并对新的实例进行分类。
KNN算法的三个主要要素是:距离度量、K值的选择和分类决策规则。距离度量可以采用欧几里得距离、曼哈顿距离等方式,而K值的选取需要根据具体问题进行选择。分类决策规则通常采用多数表决,即选择K个邻居中出现最多的类别作为新数据点的分类。
2. KNN算法实现方法
现在,我们来看一下如何使用Python实现KNN算法。以下是一个简单的示例:
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_spli