Python OpenCV3 图像分类 - 使用 K-means 算法进行图像聚类
在计算机视觉中,图像分类是一项关键的任务。它不仅可以用于图像检索和图像识别,还可以在图像处理、医学图像分析等领域发挥重要作用。K-means 算法是一种经典的聚类方法,可以将数据集分割成多个簇。本文将介绍如何使用 Python OpenCV3 库实现 K-means 算法进行图像聚类。
K-means 算法原理
K-means 算法是一种无监督学习算法,可以将一组数据划分为 K 个簇。其主要思想是通过计算数据点之间的距离来将数据分配到离它们最近的簇中。具体步骤如下:
- 选取 K 个随机的中心点作为初始样本点
- 计算每个数据点与所有中心点的距离,将数据点分配到距离最近的簇中
- 根据分配给每个簇的数据点重新计算该簇的中心点
- 重复 2、3 步骤直到满足某个停止标准(如达到指定的迭代次数或簇心不再发生变化)
Python 实现 K-means 算法进行图像聚类
首先,我们需要安装 OpenCV3 库和 NumPy 库。可以通过以下命令安装:
pip install opencv-python==3.4.8.29
pip install numpy
接着,我们加载图像并将其转换为 NumPy