1072 威佐夫游戏(威佐夫博弈模板)

578 篇文章 9 订阅 ¥299.90 ¥399.90
570 篇文章 25 订阅 ¥299.90 ¥399.90
26 篇文章 6 订阅 ¥299.90 ¥399.90
本文介绍了威佐夫博弈的规则及其与黄金分割的关系。在每次可以取任意个或相同数量石子的情况下,通过计算差值与黄金比例的乘积判断先手是否能赢。提供的C++代码实现用于分析给定石子数量的局面,帮助确定游戏胜者。
摘要由CSDN通过智能技术生成
/*
Wythoff Game:黄金分割
先取完者赢
威佐夫博弈:每次可以从一堆中取任意个或从2堆中取相同数量的石子,但不可不取
一个局面,让你求是先手输赢:差值 * 1.618 == 最小值的话后手赢,否则先手赢
一个局面,让你求先手输赢,假设先手赢的话输出他第一次的取法:
首先讨论在两边同时取的情况,很明显两边同时取的话,不论怎样取他的差值是不会变的,那么我们可以根据差值计算出其中的小的值,然后加上差值就是大的一个值,当然能取的条件是求出的最小的值不能大于其中小的一堆的石子数目。
加入在一堆中取的话,可以取任意一堆,那么其差值也是不定的,但是我们可以枚举差值,差值范围是0----大的石子数目,然后根据上面的理论判断满足条件的话就是一种合理的取法。
*/
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
double g=(sqrt(5)+1)/2;
int main(){
	int n,a,b;
	scanf("%d",&n);
	while(n--)
	{
		scanf("%d%d",&a,&b);
		if(a>b) swap(a,b);
		int t=(b-a)*g;
		if(t==a) puts(&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值