既然任何逻辑函数都可以化成最小项(最大项)标准式,
那么,只要把等式左右两边分别化成最小项(最大项)标准式,
如果形式一致,那么等式成立
若不一致,则等式必然不成立
而且,可以通过其中一个等式求最小项(最大项)标准式的过程反向推导,
得到关于等式的证明的另一种形式
至于求最小项标准式,方法很简单,
只要在缺少某元素的项中乘上该元素与其取非后的结果的和即可
如 AB+ABC=AB(C+!C)+ABC
恒等式证明:
AB+!AC+BC=AB+!AC
证明:
令 F(A,B,C)=AB+!AC+BC=AB(1)+!AC(1)+BC(1)=AB(C+!C)+!A(B+!B)C+(A+!A)BC=ABC+AB!C+!ABC+!A!BC
令 G(A,B,C)=AB+!AC+BC=AB(1)+!AC(1)+BC(1)=AB(C+!C)+!A(B+!B)C+(A+!A)BC=ABC+AB!C+!ABC+!A!BC=ABC+AB!C+!ABC+!A!BC
因为F(A,B,C)=G(A.B.C)
所以上式恒成立
此外
AB+!AC+BC=AB(1)+!AC(1)+BC(1)=AB(C+!C)+!A(B+!B)C+(A+!A)BC=ABC+AB!C+!ABC+!A!BC=AB(C+!C)+!A(B+!B)C+(A+!A)BC=AB+!AC+BC=AB(1)+!AC(1)+BC(1)
为顺序推导过程