关于逻辑代数中恒等式证明的通用方法

本文介绍了一种通过将逻辑函数转换为最小项标准式来验证逻辑等式的方法,并详细展示了如何求解最小项标准式及恒等式的证明过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

既然任何逻辑函数都可以化成最小项(最大项)标准式,

那么,只要把等式左右两边分别化成最小项(最大项)标准式,

如果形式一致,那么等式成立

若不一致,则等式必然不成立


而且,可以通过其中一个等式求最小项(最大项)标准式的过程反向推导,

得到关于等式的证明的另一种形式


至于求最小项标准式,方法很简单,

只要在缺少某元素的项中乘上该元素与其取非后的结果的和即可

如 AB+ABC=AB(C+!C)+ABC


恒等式证明:

AB+!AC+BC=AB+!AC

证明:

令 F(A,B,C)=AB+!AC+BC=AB(1)+!AC(1)+BC(1)=AB(C+!C)+!A(B+!B)C+(A+!A)BC=ABC+AB!C+!ABC+!A!BC

令 G(A,B,C)=AB+!AC+BC=AB(1)+!AC(1)+BC(1)=AB(C+!C)+!A(B+!B)C+(A+!A)BC=ABC+AB!C+!ABC+!A!BC=ABC+AB!C+!ABC+!A!BC

因为F(A,B,C)=G(A.B.C)

所以上式恒成立


此外

AB+!AC+BC=AB(1)+!AC(1)+BC(1)=AB(C+!C)+!A(B+!B)C+(A+!A)BC=ABC+AB!C+!ABC+!A!BC=AB(C+!C)+!A(B+!B)C+(A+!A)BC=AB+!AC+BC=AB(1)+!AC(1)+BC(1)

为顺序推导过程


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值