散点图用于描述两个连续性变量间的关系,三个变量之间的关系可以通过3D图形或气泡来展示,多个变量之间的两两关系可以通过散点图矩阵来展示。
一,添加了最佳拟合曲线的散点图
使用基础函数plot(x,y)来绘制散点图,其中x和y是数值型向量,代表着图形中的点(x,y)
attach(mtcars)
plot(wt,mpg,
main='Basic Scatter plot of MPG vs Weight',
xlab='Car Weight(1bs/1000)',
ylab='Miles Per Gallon',
pch=19)
abline(lm(mpg~wt),col='red',lwd=2,lty=1)
lines(lowess(wt,mpg),col='blue',lwd=2,lty=2)
abline()函数用于添加最佳拟合的线性回归直线;lowess()函数用于添加一条平滑曲线。

car包中的scatterplot()函数增强了散点图的许多功能,它可以很方便地绘制散点图,并能添加拟合曲线,边界箱线图和置信椭圆,还可以按子集绘图和交互式地识别点。
library(car)
scatterplot(mpg~wt|cyl, data=mtcars,lwd=2,span=0.75,
main='Scatter Plot of MPG vs Weight by # Cylinders',
xlab='Weight of Car (lbs/1000)',
ylab='Miles Per Gallon',
legend.plot=TRUE,
boxplots='xy')
参数注释:
formula: 在该参数中,分组使用 | group_variable 来表示。例如,mpg ~ wt| cyl,表示的含义是按照cyl的水平分别绘制mpg和wt的关系图
span:控制loess曲线中的平滑量,该参数值最大,拟合的效果越好。
legend.plot:设置为TRUE,表示在左上边界添加图例
boxplots:表示边界线箱图,有效值是x,y或xy,分别表示在x轴,y轴,或xy轴上绘制箱图。

二,散点图矩阵
基础函数paris()函数用于创建散点图矩阵,panel.cor()函数是自定义的面板函数(panel function),用于在矩阵的上三角显